Главная - Хикс Джерри
Что долен знать физик. Физика: основные понятия, формулы, законы. Основные законы физики, которые должен знать человек. Законы планетарного движения Кеплера

Самая распространенная жалоба школьника на трудность предмета звучит так: “Зачем мне эта дурацкая …. (тут можно поставить что угодно – физику, математику, историю, биологию), если я не собираюсь заниматься ей после школы?!”

Действительно, а нужно ли бедному ребеночку зубрить формулы и разбираться с законами Ньютона и Фарадея? Может, ну ее, эту пакость, займемся лучше чем-то интересным? Удивительно, но многие взрослые и сами не понимают, зачем учили физику в школе и искренне не видят связи между этой занимательной наукой и повседневной жизнью. Давайте же найдем эту связь!

Представьте себе свой обычный день. Вот вы встали с кровати, потянулись и посмотрели в зеркало. И законы физики заработали прямо с началом вашего дня!

Движение, отражение в зеркале, гравитация, которая заставляет вас идти по земле, а воду течь в раковину, а не вам в лицо, сила, которая требуется для того, чтобы поднять сумку или открыть дверь – все это физика .

Обратите внимание на лифт, легко и быстро поднимающий вас на нужный этаж, автомобиль или другой транспорт, компьютеры, планшеты и телефоны. Без физики все это никуда бы не поехало, не включилось и не заработало.

Развитие физики можно приравнять к прогрессу.

Сначала люди поняли законы оптики и изобрели простые очки , чтобы те, кто плохо видит, могли лучше ориентироваться, читать и писать. А затем на свете появились микроскопы , с помощью которых ученые сделали невероятные открытия в таких областях, как биология и медицина. И телескопы , в которые астрономы увидели планеты, звезды и целые галактики и смогли сделать выводы об устройстве Вселенной. Каждое открытие в физике помогает человечеству сделать новый шаг вперед.

Хорошо, скажете вы. Но ведь для всего перечисленного, для всех этих открытий и разработок существуют физики. То есть люди, сознательно выбравшие именно эту науку своей основной профессией. Причем же здесь остальные, да еще и гуманитарии? Им-то на что эти знания, если можно просто прочитать инструкцию к своему телефону и этого будет достаточно для его использования?


Мы уже писали, что , но кроме этого, приведем несколько примеров из повседневной жизни, когда базовое знание физики может пригодиться каждому. Причем, разберем только один раздел физики, практически полностью созданный Исааком Ньютоном, - механику.

Движение, скорость, ускорение.

Итак, все во Вселенной постоянно двигается, включая нашу планету и землю, по которой мы ходим. А ходим мы почти ежедневно в разные места. Значит, мы постоянно рассчитываем, насколько быстро доберемся до театра, работы, друзей, чтобы не опоздать. Задачи на скорость мы решаем в средней школе в рамках курса математики, но на самом деле это базовая физика.


Теперь представьте, что вы выбираете машину. У вас есть желание получить резвый автомобиль, но вам нужно возить семью, поэтому размер тоже имеет значение. То есть резвый и большой. И как же понять, какой подойдет? На что вы обратите внимание? На ускорение , конечно! Есть такой параметр – постоянное ускорение, то есть разгон от 0 до 100 км за количество секунд. Так вот чем меньше время от 0 до 100, тем бодрее будет ваша машина на старте и виражах. И это подскажет вам физика!

Когда вы начинаете (и продолжаете) водить машину, кое-что из базового курса физики вам очень пригодится. Например, вы сами поймете, что резко тормозить на трассе при скорости 120 км/ч только потому, что вам внезапно захотелось полюбоваться красивым видом, пожалуй, не стоит.


Даже если за вами не едет на такой же скорости еще несколько автомобилей, водители которых могут не успеть среагировать. Просто при торможении ускорение отрицательное, поэтому всех, кто сидит в машине, резко бросает вперед. Поверьте, впивающиеся в тело ремни и растянутые шейные мышцы – это неприятно. Просто имейте в виду такое понятие из физики, как ускорение.

Сила тяготения, импульс и другие полезности.

Физика расскажет о законе тяготения . То есть мы уже и так знаем, что если бросить предмет, то он упадет на землю. Что это значит? Земля притягивает нас и все предметы. Мало того, планета Земля притягивает даже такой тяжелый космический предмет, как Луна. Заметим, что Луна не улетает по своей траектории и каждый вечер показывается людям. Также не зависают в воздухе любые штуки, которые мы в сердцах бросили на пол. На брошенные предметы действует еще и ускорение, потому что у Земли огромная сила притяжения. А также сила трения.


Поэтому, зная об этих законах, можно понять, что происходит, если человек прыгает с парашютом. Связана ли площадь парашюта связана с замедлением скорости падения? Может, стоит просить парашют побольше? Как действует импульс на коленки парашютиста, и почему нельзя приземляться на прямые ноги?

А как выбрать горные лыжи? Вы отлично катаетесь или только начинаете? Подумайте о трении, уточните именно эти параметры своих новых лыж. Если вы новичок, не знающий физики, то очень вероятна ошибка в выборе. Успеете ли вы остановиться?


Окей, вы не собираетесь прыгать с парашютом и ничего не хотите знать про горные лыжи.

Вернемся к повседневности. Вот перед вами гайка и гаечный ключ. За какую часть ключа нужно взяться, чтобы приложить к гайке максимальную силу? Те, кто изучал физику, возьмутся за ключ как можно дальше от гайки. Чтобы открыть тяжеленную дверь в старое здание, нужно давить на нее с самого краю, подальше от петель. Нужно ли рассказывать про рычаг и точку опоры, которой так не хватало Галилею?


Наверное, этих примеров пока достаточно для иллюстрации ежедневного присутствия физики в нашей жизни. И это была только механика! А ведь есть еще оптика, которую мы упоминали в начале статьи, и электричество с магнитными полями. И это мы скромно молчим про теорию относительности.

Поверьте, физика на базовом уровне необходима каждому, чтобы не выглядеть глупо и смешно в самых обычных ситуациях.

5.2.

5.3.

6.

Физику можно назвать основной наукой об изучении природы. Все закономерности её существования изучает данная отрасль знаний. При всей её сложности, найти способ как легко выучить физику, не составляет труда.

Главное — грамотно подойти к учебному процессу.

Зачем учить физику?

После того, как только начинаешь изучать физику, не всегда понимаешь, зачем она может сгодиться. Дело не только в том, что приобретённые знания могут понадобиться с профессиональной точки зрения.

Физика как наука, даёт многое:

. формирование абсолютной наблюдательности;

. умение видеть связь, её сохранение в явлениях. (Если зарядить пушку, и поджечь фитиль — она выстрелит);

. правильно направленное мышление, порой нестандартное;

. изучение физики помогает познать окружающий мир в полной мере и узнать, что кроется за самыми обыденными вещами;

. хорошие познания станут основой для хорошей карьеры за рубежом.

При изучении дисциплины она может восприниматься как очень трудная и запутанная. Если же изучать науку как систему, постоянно практиковаться и найти хорошего преподавателя, она станет простой, даже интересной.

Какие бывают разделы физики?

«Физика» в переводе с древнегреческого означает «природа». Данная наука старается охватить в своих теоретических выкладках и практических выводах все формы и способы существования материи и поля. Основы физики изучаются в двух различных разделах: микро- и макрофизике.

Микрофизика основным предметом изучения имеет те объекты, которые невозможно увидеть невооруженным глазом (молекулы, атомы, электроны, другие элементарные частицы).

Макрофизика изучает как объекты привычных для нас размеров (к примеру, движение мяча), так и большей массы (планеты).

В состав макроскопической физики входит механика — изучает движение тел и взаимодействие между ними, скорость, передвижение, расстояние (бывает классической, релятивистской, квантовой).


Микроскопическая включает в себя разделы квантовой, ядерной, физики элементов, их свойства.

Школьный курс физики формируется в таком же порядке. Это объясняется тем, что гораздо легче ученики воспринимают то, с чем знакомы с детства. Поэтому изучение абстрактных физических категорий микрофизики даётся труднее, чем классическая механика.

Почему физика трудно даётся к изучению?

Первое ознакомление с физическими законами происходит в школе, начиная с 6-го или 7-го классов. Вначале происходит плавный переход от природоведения к более конкретным примерам из жизни. Изучаются скорость, путь, масса тела.

Изучение физики с нуля не всегда может быть эффективным. Причин этому может быть несколько:

. отсутствие необходимого оборудования для наглядной демонстрации физических законов. Даже самые простые из них трудно объяснить, оперируя лишь отвлечёнными понятиями «контур», «кинетическая энергия», «потенциальная энергия», «атом», «ток», «сохранение энергии», «газовая постоянная», «волна». Лишь абстрактное изложение в учебнике темы не заменит физического эксперимента;

. учителя не всегда заинтересовывают детей узнать, что изучает физика. Учебный процесс сводится к запоминанию определений, заучивании законов и сухой теории;

. сложные темы подаются сугубо в рамках учебной программы, только то количество часов, которое ею было отведено. Интересные примеры и парадоксы остаются в стороне.


Именно «оторванность» учебного процесса и поверхностность изучения дисциплины от реальных примеров приводит к затруднению изучения физики в школе и сохранению знаний.

Популярные ошибки при подготовке к ЗНО по физике

Готовясь к ЗНО многие допускают те ошибки, которые можно окрестить типичными:

. практические задания и задачи решаются наугад, при этом все необходимые для решения задания формулы по физике не были выучены;

. новые формулы и законы изучаются наизусть, при этом не повторяются самые необходимые, базовые;

. мгновенное решение кажется всегда правильным из-за простоты;

. готовясь к ЗНО по физике, можно забыть о том, что основной язык физики — это математика. Необходимо повторить абсолютные и относительные величины, основные теоремы (квадрат гипотенузы равен сумме квадратов катетов);

. более трудные темы (квантовая физика, теория относительности, термодинамика) остаются в стороне;

. перед тем, как решить задачу по физике, не допускается даже мысли, что она может быть комбинированной: чтобы найти ответ, необходимо сочетать несколько разделов науки, вспомнить единицы измерений величин;

. занятия по подготовке проводятся нерегулярно, и часто назначаются лишь за несколько месяцев до ЗНО.

Чтобы избежать таких ошибок, дополнительно необходимо решать задания более высокого уровня, они помогут сформировать свойства быстрого и правильного решения.

Так как учить физику эффективно?

Изучать физику может понадобиться во многих случаях: поступление в специализированный вуз, сдача экзамена, написание контрольной работы, или просто для себя. С чего начать изучение физики — это является главным вопросом, и ответ на него: оформить для себя план учёбы. Это эффективно во всех перечисленных случаях.

В этот план входит не только график занятий, но принцип их усвоения:

. при рассмотрении новой темы необходимо выписать все определения, величины, формулы, единицы измерения;

. разбирая физический закон и его математическое выражение, выяснить, какие величины в нём взаимосвязаны;

. тренируясь в решении новых заданий, для повторения решить несколько из прошлых тем. Пробовать придумывать задачи самостоятельно;

. не работать на скорость — всё делать постепенно. Объем материала необходимо дозировать;

. решать задачи, не прибегать к промежуточным числам. Конечная формула должна содержать лишь величины, которые даны в условии.

Как понять физику и её формулы?

Изначально физика была неотделима от природы. Первые наблюдения велись благодаря тем предметам и явлениям, которые ежедневно окружали человека. Основные законы физики формировались на основании опыта, который постепенно накапливался, двигаясь от контура к центру. Лишь со временем опыт оформлялся вначале в разрозненные законы, а затем — в теорию.


Понятная физика составляла основу для более сложных гипотетических построений, которые привели к современному пониманию мира.

Чтобы понять физику как науку и формулы, которые описывают взаимосвязи явлений, необходимо просто выйти на улицу или взглянуть в окно. Все теоретические выкладки, услышанные на лекции, находятся на каждом мгновенном шагу.

Падение камня — это превращение потенциальной энергии в кинетическую, преодоление расстояния к земле. Натяжение оконной занавески — результат перемещение воздушных масс под действием разного давления в разных точках. Газовый выхлоп автомобиля — действие давления. А вот если вставить пальцы в розетку — это электрический ток.

Этот предмет является не просто напечатанным параграфом в учебнике, или абстрактной задачей. Все же полученные знания необходимо проецировать на окружающий мир, и узнавать пропорционально имеющимся.

Как решать задачи по физике?

Решение задач по физике предполагает собой определённый алгоритм:

. внимательно прочитать условие задания, выяснить, какие разделы физики в нём задействованы;

. грамотно составить условие, привести все единицы измерения величин в систему СИ: километры — в метры, граммы — в килограммы;

. иметь под рукой список известных формул. Выбрать из них те, которые могут пригодиться;

. пользоваться таблицами констант (скорость света, плотности веществ, постоянная газа, длинна волны, объем 1 моля идеального газа);

. вспомнить законы, описывающие взаимодействия предложенных величин (они могут быть как из начальных разделов, так из квантовой физики);

. используя формулы, скомбинировать их для нахождения конечного числа ответа;

. произвести расчёты и вывести единицу измерения требуемой величины.


Если возникают трудности, действенным способом будет представить условие в реальной жизни. Обычная жизненная логика подскажет, какой ответ окажется абсолютным и правильным, а какие варианты стоит отбросить.

Как запомнить формулы по физике?

На экзаменах и контрольных работах списком необходимых формул не разрешается пользоваться. Поэтому полезным будет использовать мнемонические правила для запоминания соотношений и законов — вот как быстро выучить физику.

Формулы запоминаются, если связать в звуковую ассоциацию или звукоряд:

Закон Архимеда для жидкости: F = pgV : РоЖа — Во!

Закон Ампера F = Bilsina : Ампер с силой бил синус альфа.

Потенциальная энергия: E = mgh : МыЖе — Шшш!

Движение заряженной частицы в однородном электрическом поле: p = qBR , импульс частицы (p ) — импульс кобры (q , B , R ).

Уравнение идеального газа: pV = (m / M ) RT . Поворот от Мадрида на Москву: pV - пово-, RT - рот, m / M - от Мадрида на Москву (R - константа, универсальный коэффициент).

Первый закон Ньютона: не пнёшь — не полетит;

Второй закон Ньютона (для ускорения): как пнёшь — так и полетит;

Третий закон Ньютона: как пнёшь — так и получишь.

Физические законы намного легче запоминаются в форме стишков:

Закон Ома для участка цепи:

Кто не знает закон Ома?

С ним, конечно, все знакомы.

Быстро схему повтори.

U равняется RI .

Определение понятия «рычаг» :

Если любое твёрдое тело вокруг неподвижной опоры вращается,

То знай — оно рычагом называется.


К подготовке к ЗНО по физике необходимо подойти со всей серьезностью:

1. Разработать план обучения, и чётко следовать ему.

2. Заниматься регулярно, около трёх раз в неделю по полтора-два часа, без напряжения.

3. Найти список тем, рекомендуемых для подготовки к ЗНО.

4. Все формулы и законы, единицы измерения (напр., 1 километр = 1000 метров) выписывать в отдельную тетрадь.

5. Решать задачи на каждую из тем и различных уровней сложности, а также задания на сочетание различных разделов науки (к примеру, энергии и движения, теплоты и электрического поля, термодинамики, теории относительности).

6. За несколько месяцев до ЗНО проходить примеры предыдущих лет, решая их за один присест.

7. Если возникнут вопросы — обратиться за помощью или консультацией к профессиональному преподавателю.

Хорошими теоретическими и практическими пособиями по физике являются:

. Яворский Б. М., Детлаф А. А. Физика для школьников старших классов и поступающих в ВУЗы. М. Дрофа. 2003.

. Савченко Н. Е. Задачи по физике с анализом их решения. М.: Просвещение, 2000.

Коршак Е. В. , О.І. Ляшенко О. І. Фізика. К.: Перун, 2011.

Ученые с планеты Земля используют массу инструментов, пытаясь описать то, как работает природа и вселенная в целом. Что они приходят к законам и теориям. В чем разница? Научный закон можно зачастую свести к математическому утверждению, вроде E = mc²; это утверждение базируется на эмпирических данных и его истинность, как правило, ограничивается определенным набором условий. В случае E = mc² - скорость света в вакууме.

Научная теория зачастую стремится синтезировать ряд фактов или наблюдений за конкретными явлениями. И в целом (но не всегда) выходит четкое и проверяемое утверждение относительно того, как функционирует природа. Совсем не обязательно сводить научную теорию к уравнению, но она на самом деле представляет собой нечто фундаментальное о работе природы.

Как законы, так и теории зависят от основных элементов научного метода, например, создании гипотез, проведения экспериментов, нахождения (или не нахождения) эмпирических данных и заключение выводов. В конце концов, ученые должны быть в состоянии повторить результаты, если эксперименту суждено стать основой для общепринятного закона или теории.

В этой статье мы рассмотрим десять научных законов и теорий, которые вы можете освежить в памяти, даже если вы, к примеру, не так часто обращаетесь к сканирующему электронному микроскопу. Начнем со взрыва и закончим неопределенностью.

Если и стоит знать хотя бы одну научную теорию, то пусть она объяснит, как вселенная достигла нынешнего своего состояния (или не достигла, ). На основании исследований, проведенных Эдвином Хабблом, Жоржем Леметром и Альбертом Эйнштейном, теория Большого Взрыва постулирует, что Вселенная началась 14 миллиардов лет назад с массивного расширения. В какой-то момент Вселенная была заключена в одной точке и охватывала всю материю нынешней вселенной. Это движение продолжается и по сей день, а сама вселенная постоянно расширяется.

Теория Большого Взрыва получила широкую поддержку в научных кругах после того, как Арно Пензиас и Роберт Уилсон обнаружили космический микроволновый фон в 1965 году. С помощью радиотелескопов два астронома обнаружили космический шум, или статику, которая не рассеивается со временем. В сотрудничестве с принстонским исследователем Робертом Дике, пара ученых подтвердила гипотезу Дике о том, что первоначальный Большой Взрыв оставил после себя излучение низкого уровня, которое можно обнаружить по всей Вселенной.

Закон космического расширения Хаббла

Давайте на секунду задержим Эдвина Хаббла. В то время как в 1920-х годах бушевала Великая депрессия, Хаббл выступал с новаторским астрономическим исследованием. Он не только доказал, что были и другие галактики помимо Млечного Пути, но также обнаружил, что эти галактики несутся прочь от нашей собственной, и это движение он назвал разбеганием.

Для того, чтобы количественно оценить скорость этого галактического движения, Хаббл предложил закон космического расширения, он же закон Хаббла. Уравнение выглядит так: скорость = H0 x расстояние. Скорость представляет собой скорость разбегания галактик; H0 - это постоянная Хаббла, или параметр, который показывает скорость расширения вселенной; расстояние - это расстояние одной галактики до той, с которой происходит сравнение.

Постоянная Хаббла рассчитывалась при разных значениях в течение достаточно долгого времени, однако в настоящее время она замерла на точке 70 км/с на мегапарсек. Для нас это не так важно. Важно то, что закон представляет собой удобный способ измерения скорости галактики относительно нашей собственной. И еще важно то, что закон установил, что Вселенная состоит из многих галактик, движение которых прослеживается до Большого Взрыва.

Законы планетарного движения Кеплера

На протяжении веков ученые сражались друг с другом и с религиозными лидерами за орбиты планет, особенно за то, вращаются ли они вокруг Солнца. В 16 веке Коперник выдвинул свою спорную концепцию гелиоцентрической Солнечной системы, в которой планеты вращаются вокруг Солнца, а не Земли. Однако только с Иоганном Кеплером, который опирался на работы Тихо Браге и других астрономов, появилась четкая научная основа для движения планет.

Три закона планетарного движения Кеплера, сложившиеся в начале 17 века, описывают движение планет вокруг Солнца. Первый закон, который иногда называют законом орбит, утверждает, что планеты вращаются вокруг Солнца по эллиптической орбите. Второй закон, закон площадей, говорит, что линия, соединяющая планету с солнцем, образует равные площади через равные промежутки времени. Другими словами, если вы измеряете площадь, созданную нарисованной линией от Земли от Солнца, и отслеживаете движение Земли на протяжении 30 дней, площадь будет одинаковой, вне зависимости от положения Земли касательно начала отсчета.

Третий закон, закон периодов, позволяет установить четкую взаимосвязь между орбитальным периодом планеты и расстоянием до Солнца. Благодаря этому закону, мы знаем, что планета, которая относительно близка к Солнцу, вроде Венеры, имеет гораздо более краткий орбитальный период, чем далекие планеты, вроде Нептуна.

Универсальный закон тяготения

Сегодня это может быть в порядке вещей, но более чем 300 лет назад сэр Исаак Ньютон предложил революционную идею: два любых объекта, независимо от их массы, оказывают гравитационное притяжение друг на друга. Этот закон представлен уравнением, с которым многие школьники сталкиваются в старших классах физико-математического профиля.

F = G × [(m1m2)/r²]

F - это гравитационная сила между двумя объектами, измеряемая в ньютонах. M1 и M2 - это массы двух объектов, в то время как r - это расстояние между ними. G - это гравитационная постоянная, в настоящее время рассчитанная как 6,67384(80)·10 −11 или Н·м²·кг −2 .

Преимущество универсального закона тяготения в том, что он позволяет вычислить гравитационное притяжение между двумя любыми объектами. Эта способность крайне полезна, когда ученые, например, запускают спутник на орбиту или определяют курс Луны.

Законы Ньютона

Раз уж мы заговорили об одном из величайших ученых, когда-либо живущих на Земле, давайте поговорим о других знаменитых законах Ньютона. Его три закона движения составляют существенную часть современной физики. И как и многие другие законы физики, они элегантны в своей простоте.

Первый из трех законов утверждает, что объект в движении остается в движении, если на него не действует внешняя сила. Для шарика, который катится по полу, внешней силой может быть трение между шаром и полом, или же мальчик, который бьет по шарику в другом направлении.

Второй закон устанавливает связь между массой объекта (m) и его ускорением (a) в виде уравнения F = m x a. F представляет собой силу, измеряемую в ньютонах. Также это вектор, то есть у него есть направленный компонент. Благодаря ускорению, мяч, который катится по полу, обладает особым вектором в направлении его движения, и это учитывается при расчете силы.

Третий закон довольно содержательный и должен быть вам знаком: для каждого действия есть равное противодействие. То есть для каждой силы, приложенной к объекту на поверхности, объект отталкивается с такой же силой.

Законы термодинамики

Британский физик и писатель Ч. П. Сноу однажды сказал, что неученый, который не знал второго закона термодинамики, был как ученый, который никогда не читал Шекспира. Нынче известное заявление Сноу подчеркивало важность термодинамики и необходимость даже людям, далеким от науки, знать его.

Термодинамика - это наука о том, как энергия работает в системе, будь то двигатель или ядро Земли. Ее можно свести к нескольким базовым законам, которые Сноу обозначил следующим образом:

  • Вы не можете выиграть.
  • Вы не избежите убытков.
  • Вы не можете выйти из игры.

Давайте немного разберемся с этим. Говоря, что вы не можете выиграть, Сноу имел в виду то, что поскольку материя и энергия сохраняются, вы не можете получить одно, не потеряв второе (то есть E=mc²). Также это означает, что для работы двигателя вам нужно поставлять тепло, однако в отсутствии идеально замкнутой системы некоторое количество тепла неизбежно будет уходить в открытый мир, что приведет ко второму закону.

Второй закон - убытки неизбежны - означает, что в связи с возрастающей энтропией, вы не можете вернуться к прежнему энергетическому состоянию. Энергия, сконцентрированная в одном месте, всегда будет стремиться к местам более низкой концентрации.

Наконец, третий закон - вы не можете выйти из игры - относится , самой низкой теоретически возможной температуре - минус 273,15 градуса Цельсия. Когда система достигает абсолютного нуля, движение молекул останавливается, а значит энтропия достигнет самого низкого значения и не будет даже кинетической энергии. Но в реальном мире достичь абсолютного нуля невозможно - только очень близко к нему подойти.

Сила Архимеда

После того как древний грек Архимед открыл свой принцип плавучести, он якобы крикнул «Эврика!» (Нашел!) и побежал голышом по Сиракузам. Так гласит легенда. Открытие было вот настолько важным. Также легенда гласит, что Архимед обнаружил принцип, когда заметил, что вода в ванной поднимается при погружении в него тела.

Согласно принципу плавучести Архимеда, сила, действующая на погруженный или частично погруженный объект, равна массе жидкости, которую смещает объект. Этот принцип имеет важнейшее значение в расчетах плотности, а также проектировании подлодок и других океанических судов.

Эвoлюция и естественный отбор

Теперь, когда мы установили некоторые из основных понятий о том, с чего началась Вселенная и как физические законы влияют на нашу повседневную жизнь, давайте обратим внимание на человеческую форму и выясним, как мы дошли до такого. По мнению большинства ученых, вся жизнь на Земле имеет общего предка. Но для того, чтобы образовалась такая огромная разница между всеми живыми организмами, некоторые из них должны были превратиться в отдельный вид.

В общем смысле, эта дифференциация произошла в процессе эволюции. Популяции организмов и их черты прошли через такие механизмы, как мутации. Те, у кого черты были более выгодными для выживания, вроде коричневых лягушек, которые отлично маскируются в болоте, были естественным образом избраны для выживания. Вот откуда взял начало термин естественный отбор.

Можно умножить две этих теории на много-много времени, и собственно это сделал Дарвин в 19 веке. Эволюция и естественный отбор объясняют огромное разнообразие жизни на Земле.

Общая теория относительности

Альберта Эйнштейна была и остается важнейшим открытием, которое навсегда изменила наш взгляд на вселенную. Главным прорывом Эйнштейна было заявление о том, что пространство и время не являются абсолютными, а гравитация - это не просто сила, приложенная к объекту или массе. Скорее гравитация связана с тем, что масса искривляет само пространство и время (пространство-время).

Чтобы осмыслить это, представьте, что вы едете через всю Землю по прямой линии в восточном направлении, скажем, из северного полушария. Через некоторое время, если кто-то захочет точно определить ваше местоположение вы будете гораздо южнее и восточнее своего исходного положения. Это потому что Земля изогнута. Чтобы ехать прямо на восток, вам нужно учитывать форму Земли и ехать под углом немного на север. Сравните круглый шарик и лист бумаги.

Пространство - это в значительной мере то же самое. К примеру, для пассажиров ракеты, летящей вокруг Земли, будет очевидно, что они летят по прямой в пространстве. Но на самом деле, пространство-время вокруг них изгибается под действием силы тяжести Земли, заставляя их одновременно двигаться вперед и оставаться на орбите Земли.

Теория Эйнштейна оказала огромное влияние на будущее астрофизики и космологии. Она объяснила небольшую и неожиданную аномалию орбиты Меркурия, показала, как изгибается свет звезд и заложила теоретические основы для черных дыр.

Принцип неопределенности Гейзенберга

Расширение теории относительности Эйнштейна рассказало нам больше о том, как работает Вселенная, и помогло заложить основу для квантовой физики, что привело к совершенно неожиданному конфузу теоретической науки. В 1927 году осознание того, что все законы вселенной в определенном контексте являются гибкими, привело к ошеломительному открытию немецкого ученого Вернера Гейзенберга.

Постулируя свой принцип неопределенности, Гейзенберг понял, что невозможно одновременно знать с высоким уровнем точности два свойства частицы. Вы можете знать положение электрона с высокой степенью точности, но не его импульс, и наоборот.

Позже Нильс Бор сделал открытие, которое помогло объяснить принцип Гейзенберга. Бор выяснил, что электрон обладает качествами как частицы, так и волны. Концепция стала известна как корпускулярно-волновой дуализм и легла в основу квантовой физики. Поэтому, когда мы измеряем положение электрона, мы определяем его как частицу в определенной точке пространства с неопределенной длиной волны. Когда мы измеряем импульс, мы рассматриваем электрон как волну, а значит можем знать амплитуду ее длины, но не положение.

Все, что происходит в нашем мире, происходит благодаря воздействию определенных сил в физике. И выучить каждую из них придется если не в школе, то уж в институте точно.

Конечно, вы можете попытаться вызубрить их. Но гораздо быстрее, веселее и интереснее будет просто осознать суть каждой физической силы как она взаимодействует с окружающей средой.

Силы в природе и фундаментальные взаимодействия

Сил существует огромное множество. Сила Архимеда, сила тяжести, сила Ампера, сила Лоренца, Кореолиса, сила трения-качения и др. Собственно, все силы выучить невозможно, так как не все они еще открыты. Но и это очень важно - все без исключения известные нам силы можно свести к проявлению так называемых фундаментальных физических взаимодействий .

В природе существуют 4 фундаментальных физических взаимодействия. Точнее будет сказать, что людям известны 4 фундаментальных взаимодействия, и на данный момент иных взаимодействий не обнаружено. Что это за взаимодействия?

  • Гравитационное взаимодействие
  • Электромагнитное взаимодействие
  • Сильное взаимодействие
  • Слабое взаимодействие

Так, сила тяжести - проявление гравитационного взаимодействия. Большинство механических сил (сила трения, сила упругости) являются следствием электромагнитного взаимодействия. Сильное взаимодействие удерживает нуклоны ядра атома вместе, не давая ядру распасться. Слабое взаимодействие заставляет распадаться свободные элементарные частицы. При этом, электромагнитное и слабое взаимодействия объединены в электрослабое взаимодействие .

Возможным пятым фундаментальным взаимодействием (после открытия бозона Хиггса ) называют поле Хиггса . Но в этой области все изучено настолько мало, что мы не будем спешить с выводами, а лучше подождем, что скажут нам ученые из ЦЕРНа.

Учить законы физики можно двумя способами.

Первый – тупо выучить значения, определения, формулы. Существенный недостаток этого способа – он вряд ли поможет ответить на дополнительные вопросы преподавателя. Есть и другой немаловажный минус этого метода – выучив таким образом, вы не получите самого главного: понимания. В итоге, заучивание правила/формулы/закона или чего бы там ни было позволяет приобрести лишь непрочные, кратковременные знания по теме.

Второй способ – понимание изучаемого материала. Но так ли легко понять то, что понять (по вашему мнению) невозможно?

Есть, есть решение этой ужасно трудной, но решабельной проблемы! Вот несколько способов того, как выучить все силы в физике (и вообще в любом другом предмете):


На заметку!

Важно помнить и знать все физические силы (ну или выучить весь список их в физике), чтобы избежать неловких недоразумений. Помните, что масса тела – это не его вес, а мера его инертности. Например, в условиях невесомости тела не имеют веса, потому как отсутствует гравитация. А вот если вы захотите сдвинуть тело в невесомости с места, придется воздействовать на него с определенной силой. И чем выше масса тела, тем большую силу придется задействовать.

Если вам удастся представить себе, каким образом вес человека может меняться в зависимости от выбора планеты, вам удастся довольно быстро разобраться с понятием гравитационной силы, с понятиями веса и массы, силой ускорения и прочими физическими силами. Это понимание принесет с собой логическое осознание других происходящих процессов, и в результате вам не придется даже заучивать непонятный материал – вы сможете запоминать его по мере прохождения. Достаточно просто понять суть.

  1. Чтобы понять электромагнитное воздействие, достаточно будет просто понять, каким образом ток протекает по проводнику и какие при этом образуются поля, как эти поля взаимодействуют руг с другом. Рассмотрите это на простейших примерах, и вам не составит труда разбираться в принципах работы электродвигателя, принципах горения электрической лампочки и пр.

Преподавателя в первую очередь будет волновать то, насколько хорошо вы разбираетесь в изученном материале. И не так уж важно, будете ли вы помнить назубок все формулы. А в случае решения контрольных, лабораторных, задач, практических работ или купить РГР вам всегда смогут помочь наши специалисты , сила которых таится в знаниях и многолетнем практическом опыте!

Чтобы успешно сдать экзамен по физике, необходимо быть внимательным на занятиях в классе, регулярно изучать новый материал и достаточно глубоко понимать основные идеи и принципы. Для этого можно использовать несколько методов и сотрудничать с одноклассниками, чтобы закрепить знания. Кроме того, важно хорошо отдохнуть и как следует перекусить перед экзаменом, а также сохранять спокойствие во время него. Если вы как следует учились перед экзаменом, то сможете сдать его без особых проблем.

Шаги

Как извлечь максимальную пользу из занятий в классе

    Начните изучать пройденный материал за несколько дней или недель до экзамена. Вряд ли вы нормально сдадите экзамен, если начнете готовиться к нему в последний вечер. Запланируйте время для изучения и закрепления материала и решения практических заданий за несколько дней или даже недель до экзамена, чтобы успеть как следует подготовиться к нему.

    • Постарайтесь как можно лучше усвоить необходимый материал, чтобы уверенно чувствовать себя во время экзамена.
  1. Просмотрите темы, которые могут попасться на экзамене. Скорее всего, именно эти темы вы проходили в последнее время на уроках, и вам задавали по ним домашние задания. Просмотрите записи, которые вы вели в классе, и постарайтесь запомнить основные формулы и понятия, которые могут понадобиться при сдаче экзамена.

  2. Читайте перед классными занятиями учебник. Заранее знакомьтесь с соответствующей темой, чтобы лучше усвоить материал во время урока. Многие физические принципы базируются на том, что вы изучали ранее. Определите те моменты, которые вам не ясны, и запишите вопросы, чтобы задать их учителю.

    • Например, если вы уже выучили, как определить скорость, вполне вероятно, что на следующем этапе вы узнаете о том, как вычислить среднее ускорение. Заранее знакомьтесь с соответствующим разделом учебника, чтобы лучше усвоить материал.
  3. Решайте задачи дома. После каждого часа занятий в школе тратьте не менее 2–3 часов на то, чтобы запомнить новые формулы и научиться пользоваться ими. Такое повторение поможет вам лучше усвоить новые идеи и научиться решать задачи, которые могут встретиться на экзамене.

    • При желании можно засекать время, чтобы воспроизвести условия предстоящего экзамена.
  4. Просматривайте и исправляйте свои домашние работы. Просматривайте выполненные домашние работы и старайтесь заново решить те задачи, которые вызвали у вас затруднения или были выполнены неправильно. Учтите, что многие преподаватели задают на экзамене те же вопросы и задания, которые встречались в домашних заданиях.

    • Следует просматривать даже правильно выполненные задания, чтобы закрепить пройденный материал.
  5. Посещайте все занятия и будьте внимательны. В физике новые идеи и концепции строятся на предыдущих знаниях, поэтому так важно не пропускать уроки и регулярно заниматься, иначе можно отстать от других. Если вы не можете посетить занятие, обязательно достаньте его конспект и прочитайте соответствующий раздел в учебнике.

    • Если вы не можете посещать занятия из-за чрезвычайной ситуации или болезни, спросите у преподавателя, какой материал необходимо выучить.
  6. Используйте карточки, чтобы лучше запомнить различные термины и формулы. Запишите на одной стороне карточки название физического закона, а на другой - соответствующую формулу. Попросите кого-нибудь громко прочесть название формулы, после чего постарайтесь правильно записать ее.

    • Например, можно написать на одной стороне карточки «скорость», а на второй указать соответствующую формулу: «v=s/t».
    • Можно написать на одной стороне карточки «второй закон Ньютона», а на второй указать соответствующую формулу: «∑F = ma».
  7. Вспомните, что вызывало у вас наибольшие проблемы на прошлых экзаменах. Если вы уже писали контрольные работы или сдавали экзамены раньше, необходимо уделить особое внимание тем темам, которые вызывали у вас трудности. Таким образом вы подтянете свои слабые места и сможете получить более высокую оценку.

    • Это особенно полезно сделать перед финальными экзаменами, на которых оцениваются знания по многим разделам физики.

Как подготовиться накануне экзамена

  1. Поспите в ночь перед экзаменом 7–8 часов . Необходимо как следует выспаться, чтобы легче вспоминать пройденный материал и находить правильные решения задач. Если вы будете зубрить всю ночь и не отдохнете, то на следующее утро плохо будете помнить то, что учили накануне.

    • Даже если экзамен запланирован на середину дня, лучше встать пораньше и заранее настроиться.
    • В физике требуется повышенное внимание и критическое мышление, поэтому лучше приходить на экзамен хорошо отдохнувшим и выспавшимся.
    • Соблюдайте привычный режим сна - это позволит вам закрепить полученные знания.
  2. Как следует позавтракайте в день экзамена. На завтрак полезно есть продукты, богатые медленно усваиваемыми углеводами, например овсяные хлопья или хлеб из цельных зерен - это поможет эффективнее действовать во время экзамена. Следует также поесть белковой пищи, такой как яйца, йогурт или молоко, чтобы дольше оставаться сытым. И наконец, обеспечьте свой организм дополнительным зарядом энергии: завершите завтрак фруктами, в которых содержится много пищевых волокон, например яблоками, бананами или грушами.

    • Здоровый, сытный завтрак перед экзаменом поможет вам лучше вспомнить пройденный материал.
 


Читайте:



Понятие и признаки общества

Понятие и признаки общества

Мы все живем на одной планете. Нас сегодня уже семь миллиардов. Знаете, что нас всех объединяет? Оказывается, мы все являемся частью общества. Что...

Основные понятия теории вероятностей Значение е теория вероятности

Основные понятия теории вероятностей Значение е теория вероятности

Мама мыла раму Под занавес продолжительных летних каникул пришло время потихоньку возвращаться к высшей математике и торжественно открыть пустой...

Set out — английский фразовый глагол

Set out — английский фразовый глагол

Помним, что глагол set является неправильным . Все его три формы (формы настоящего и прошедшего времени, а также причастие прошедшего времени)...

Общая биология для студентов

Общая биология для студентов

Частный преподаватель Стаж 6 лет от 1 400 руб / час свободен Связаться Репетитор по биологии Я готовлю учащихся к экзаменам (ОГЭ и ЕГЭ/...

feed-image RSS