Главная - Коэльо Пауло
Вероятностные и статистические методы. Вероятностно-статистические методы принятия решений Оценка распределения величины

Статистические методы

Статисти́ческие ме́тоды - методы анализа статистических данных. Выделяют методы прикладной статистики , которые могут применяться во всех областях научных исследований и любых отраслях народного хозяйства, и другие статистические методы, применимость которых ограничена той или иной сферой. Имеются в виду такие методы, как статистический приемочный контроль, статистическое регулирование технологических процессов, надежность и испытания, планирование экспериментов.

Классификация статистических методов

Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Целесообразно выделить три вида научной и прикладной деятельности в области статистических методов анализа данных (по степени специфичности методов, сопряженной с погруженностью в конкретные проблемы):

а) разработка и исследование методов общего назначения, без учета специфики области применения;

б) разработка и исследование статистических моделей реальных явлений и процессов в соответствии с потребностями той или иной области деятельности;

в) применение статистических методов и моделей для статистического анализа конкретных данных.

Прикладная статистика

Описание вида данных и механизма их порождения - начало любого статистического исследования. Для описания данных применяют как детерминированные, так и вероятностные методы. С помощью детерминированных методов можно проанализировать только те данные, которые имеются в распоряжении исследователя. Например, с их помощью получены таблицы, рассчитанные органами официальной государственной статистики на основе представленных предприятиями и организациями статистических отчетов. Перенести полученные результаты на более широкую совокупность, использовать их для предсказания и управления можно лишь на основе вероятностно-статистического моделирования. Поэтому в математическую статистику часто включают лишь методы, опирающиеся на теорию вероятностей.

Мы не считаем возможным противопоставлять детерминированные и вероятностно-статистические методы. Мы рассматриваем их как последовательные этапы статистического анализа. На первом этапе необходимо проанализировать имеющие данные, представить их в удобном для восприятия виде с помощью таблиц и диаграмм. Затем статистические данные целесообразно проанализировать на основе тех или иных вероятностно-статистических моделей. Отметим, что возможность более глубокого проникновения в суть реального явления или процесса обеспечивается разработкой адекватной математической модели.

В простейшей ситуации статистические данные - это значения некоторого признака, свойственного изучаемым объектам. Значения могут быть количественными или представлять собой указание на категорию, к которой можно отнести объект. Во втором случае говорят о качественном признаке.

При измерении по нескольким количественным или качественным признакам в качестве статистических данных об объекте получаем вектор. Его можно рассматривать как новый вид данных. В таком случае выборка состоит из набора векторов. Есть часть координат - числа, а часть - качественные (категоризованные) данные, то говорим о векторе разнотипных данных.

Одним элементом выборки, то есть одним измерением, может быть и функция в целом. Например, описывающая динамику показателя, то есть его изменение во времени, - электрокардиограмма больного или амплитуда биений вала двигателя. Или временной ряд, описывающий динамику показателей определенной фирмы. Тогда выборка состоит из набора функций.

Элементами выборки могут быть и иные математические объекты. Например, бинарные отношения. Так, при опросах экспертов часто используют упорядочения (ранжировки) объектов экспертизы - образцов продукции, инвестиционных проектов, вариантов управленческих решений. В зависимости от регламента экспертного исследования элементами выборки могут быть различные виды бинарных отношений (упорядочения, разбиения, толерантности), множества, нечеткие множества и т. д.

Итак, математическая природа элементов выборки в различных задачах прикладной статистики может быть самой разной. Однако можно выделить два класса статистических данных - числовые и нечисловые. Соответственно прикладная статистика разбивается на две части - числовую статистику и нечисловую статистику.

Числовые статистические данные - это числа, вектора, функции. Их можно складывать, умножать на коэффициенты. Поэтому в числовой статистике большое значение имеют разнообразные суммы. Математический аппарат анализа сумм случайных элементов выборки - это (классические) законы больших чисел и центральные предельные теоремы.

Нечисловые статистические данные - это категоризованные данные, вектора разнотипных признаков, бинарные отношения, множества, нечеткие множества и др. Их нельзя складывать и умножать на коэффициенты. Поэтому не имеет смысла говорить о суммах нечисловых статистических данных. Они являются элементами нечисловых математических пространств (множеств). Математический аппарат анализа нечисловых статистических данных основан на использовании расстояний между элементами (а также мер близости, показателей различия) в таких пространствах. С помощью расстояний определяются эмпирические и теоретические средние, доказываются законы больших чисел, строятся непараметрические оценки плотности распределения вероятностей, решаются задачи диагностики и кластерного анализа, и т. д. (см. ).

В прикладных исследованиях используют статистические данные различных видов. Это связано, в частности, со способами их получения. Например, если испытания некоторых технических устройств продолжаются до определенного момента времени, то получаем т. н. цензурированные данные, состоящие из набора чисел - продолжительности работы ряда устройств до отказа, и информации о том, что остальные устройства продолжали работать в момент окончания испытания. Цензурированные данные часто используются при оценке и контроле надежности технических устройств.

Обычно отдельно рассматривают статистические методы анализа данных первых трех типов. Это ограничение вызвано тем отмеченным выше обстоятельством, что математический аппарат для анализа данных нечисловой природы - существенно иной, чем для данных в виде чисел, векторов и функций.

Вероятностно-статистическое моделирование

При применении статистических методов в конкретных областях знаний и отраслях народного хозяйства получаем научно-практические дисциплины типа «статистические методы в промышленности», «статистические методы в медицине» и др. С этой точки зрения эконометрика - это «статистические методы в экономике». Эти дисциплины группы б) обычно опираются на вероятностно-статистические модели, построенные в соответствии с особенностями области применения. Весьма поучительно сопоставить вероятностно-статистические модели, применяемые в различных областях, обнаружить их близость и вместе с тем констатировать некоторые различия. Так, видна близость постановок задач и применяемых для их решения статистических методов в таких областях, как научные медицинские исследования, конкретные социологические исследования и маркетинговые исследования, или, короче, в медицине , социологии и маркетинге . Они часто объединяются вместе под названием «выборочные исследования».

Отличие выборочных исследований от экспертных проявляется, прежде всего, в числе обследованных объектов или субъектов - в выборочных исследованиях речь обычно идет о сотнях, а в экспертных - о десятках. Зато технологии экспертных исследований гораздо изощреннее. Еще более выражена специфика в демографических или логистических моделях, при обработке нарративной (текстовой, летописной) информации или при изучении взаимовлияния факторов.

Вопросы надежности и безопасности технических устройств и технологий, теории массового обслуживания подробно рассмотрены, в большом количестве научных работ.

Статистический анализ конкретных данных

Применение статистических методов и моделей для статистического анализа конкретных данных тесно привязано к проблемам соответствующей области. Результаты третьего из выделенных видов научной и прикладной деятельности находятся на стыке дисциплин. Их можно рассматривать как примеры практического применения статистических методов. Но не меньше оснований относить их к соответствующей области деятельности человека.

Например, результаты опроса потребителей растворимого кофе естественно отнести к маркетингу (что и делают, читая лекции по маркетинговым исследованиям). Исследование динамики роста цен с помощью индексов инфляции, рассчитанных по независимо собранной информации, представляет интерес прежде всего с точки зрения экономики и управления народным хозяйством (как на макроуровне, так и на уровне отдельных организаций).

Перспективы развития

Теория статистических методов нацелена на решение реальных задач. Поэтому в ней постоянно возникают новые постановки математических задач анализа статистических данных, развиваются и обосновываются новые методы. Обоснование часто проводится математическими средствами, то есть путем доказательства теорем. Большую роль играет методологическая составляющая - как именно ставить задачи, какие предположения принять с целью дальнейшего математического изучения. Велика роль современных информационных технологий, в частности, компьютерного эксперимента.

Актуальной является задача анализа истории статистических методов с целью выявления тенденций развития и применения их для прогнозирования.

Литература

2. Нейлор Т. Машинные имитационные эксперименты с моделями экономических систем. - М.: Мир, 1975. - 500 с.

3. Крамер Г. Математические методы статистики. - М.: Мир, 1948 (1-е изд.), 1975 (2-е изд.). - 648 с.

4. Большев Л. Н., Смирнов Н. В. Таблицы математической статистики. - М.: Наука, 1965 (1-е изд.), 1968 (2-е изд.), 1983 (3-е изд.).

5. Смирнов Н. В., Дунин-Барковский И. В. Курс теории вероятностей и математической статистики для технических приложений. Изд. 3-е, стереотипное. - М.: Наука, 1969. - 512 с.

6. Норман Дрейпер, Гарри Смит Прикладной регрессионный анализ. Множественная регрессия = Applied Regression Analysis. - 3-е изд. - М.: «Диалектика» , 2007. - С. 912. - ISBN 0-471-17082-8

Смотри также

Wikimedia Foundation . 2010 .

  • Yat-Kha
  • Амальгама (значения)

Смотреть что такое "Статистические методы" в других словарях:

    СТАТИСТИЧЕСКИЕ МЕТОДЫ - СТАТИСТИЧЕСКИЕ МЕТОДЫ научные методы описания и изучения массовых явлений, допускающих количественное (численное) выражение. Слово “статистика” (от игал. stato государство) имеет общий корень со словом “государство”. Первоначально оно… … Философская энциклопедия

    СТАТИСТИЧЕСКИЕ МЕТОДЫ – - научные методы описания и изучения массовых явлений, допускающих количественное (численное) выражение. Слово «статистика» (от итал. stato – государство) имеет общий корень со словом «государство». Первоначально оно относилось к науке управления и … Философская энциклопедия

    Статистические методы - (в экологии и биоценологии) методы вариационной статистики, позволяющие исследовать целое (напр., фитоценоз, популяцию, продуктивность) по его частным совокупностям (напр., по данным, полученным на учетных площадках) и оценить степень точности… … Экологический словарь

    статистические методы - (в психологии) (от лат. status состояние) нек рые методы прикладной математической статистики, используемые в психологии в основном для обработки экспериментальных результатов. Основная цель применения С. м. повышение обоснованности выводов в… … Большая психологическая энциклопедия

    Статистические методы - 20.2. Статистические методы Конкретные статистические методы, используемые для организации, регулирования и проверки деятельности, включают, но не ограничиваются следующими: а) планированием экспериментов и факторный анализ; b) анализ дисперсии и … Словарь-справочник терминов нормативно-технической документации

    СТАТИСТИЧЕСКИЕ МЕТОДЫ - методы исследования количеств. стороны массовых обществ. явлений и процессов. С. м. дают возможность в цифровом выражении характеризовать происходящие изменения в обществ. процессах, изучать разл. формы социально экономич. закономерностей, смену… … Сельско-хозяйственный энциклопедический словарь

    СТАТИСТИЧЕСКИЕ МЕТОДЫ - некоторые методы прикладной математической статистики, используемые для обработки экспериментальных результатов. Ряд статистических методов был разработан специально для проверки качества психологических тестов, для применения в профессиональном… … Профессиональное образование. Словарь

    СТАТИСТИЧЕСКИЕ МЕТОДЫ - (в инженерной психологии) (от лат. status состояние) некоторые методы прикладной статистики, используемые в инженерной психологии для обработки экспериментальных результатов. Основная цель применения С. м. повышение обоснованности выводов в… … Энциклопедический словарь по психологии и педагогике

Как используются теория вероятностей и математическая статистика? Эти дисциплины – основа вероятностно-статистических методов принятия решений. Чтобы воспользоваться их математическим аппаратом, необходимо задачи принятия решений выразить в терминах вероятностно-статистических моделей. Применение конкретного вероятностно-статистического метода принятия решений состоит из трех этапов:

Переход от экономической, управленческой, технологической реальности к абстрактной математико-статистической схеме, т.е. построение вероятностной модели системы управления, технологического процесса, процедуры принятия решений, в частности по результатам статистического контроля, и т.п.

Проведение расчетов и получение выводов чисто математическими средствами в рамках вероятностной модели;

Интерпретация математико-статистических выводов применительно к реальной ситуации и принятие соответствующего решения (например, о соответствии или несоответствии качества продукции установленным требованиям, необходимости наладки технологического процесса и т.п.), в частности, заключения (о доле дефектных единиц продукции в партии, о конкретном виде законов распределения контролируемых параметров технологического процесса и др.).

Математическая статистика использует понятия, методы и результаты теории вероятностей. Рассмотрим основные вопросы построения вероятностных моделей принятия решений в экономических, управленческих, технологических и иных ситуациях. Для активного и правильного использования нормативно-технических и инструктивно-методических документов по вероятностно-статистическим методам принятия решений нужны предварительные знания. Так, необходимо знать, при каких условиях следует применять тот или иной документ, какую исходную информацию необходимо иметь для его выбора и применения, какие решения должны быть приняты по результатам обработки данных и т.д.

Примеры применения теории вероятностей и математической статистики. Рассмотрим несколько примеров, когда вероятностно-статистические модели являются хорошим инструментом для решения управленческих, производственных, экономических, народнохозяйственных задач. Так, например, в романе А.Н.Толстого «Хождение по мукам» (т.1) говорится: «мастерская дает двадцать три процента брака, этой цифры вы и держитесь, - сказал Струков Ивану Ильичу».

Встает вопрос, как понимать эти слова в разговоре заводских менеджеров, поскольку одна единица продукции не может быть дефектна на 23%. Она может быть либо годной, либо дефектной. Наверно, Струков имел в виду, что в партии большого объема содержится примерно 23% дефектных единиц продукции. Тогда возникает вопрос, а что значит «примерно»? Пусть из 100 проверенных единиц продукции 30 окажутся дефектными, или из 1000 – 300, или из 100000 – 30000 и т.д., надо ли обвинять Струкова во лжи?

Или другой пример. Монетка, которую используют как жребий, должна быть «симметричной», т.е. при ее бросании в среднем в половине случаев должен выпадать герб, а в половине случаев – решетка (решка, цифра). Но что означает «в среднем»? Если провести много серий по 10 бросаний в каждой серии, то часто будут встречаться серии, в которых монетка 4 раза выпадает гербом. Для симметричной монеты это будет происходить в 20,5% серий. А если на 100000 бросаний окажется 40000 гербов, то можно ли считать монету симметричной? Процедура принятия решений строится на основе теории вероятностей и математической статистики.

Рассматриваемый пример может показаться недостаточно серьезным. Однако это не так. Жеребьевка широко используется при организации промышленных технико-экономических экспериментов, например, при обработке результатов измерения показателя качества (момента трения) подшипников в зависимости от различных технологических факторов (влияния консервационной среды, методов подготовки подшипников перед измерением, влияния нагрузки подшипников в процессе измерения и т.п.). Допустим, необходимо сравнить качество подшипников в зависимости от результатов хранения их в разных консервационных маслах, т.е. в маслах состава А и В . При планировании такого эксперимента возникает вопрос, какие подшипники следует поместить в масло состава А , а какие – в масло состава В , но так, чтобы избежать субъективизма и обеспечить объективность принимаемого решения.

Ответ на этот вопрос может быть получен с помощью жребия. Аналогичный пример можно привести и с контролем качества любой продукции. Чтобы решить, соответствует или не соответствует контролируемая партия продукции установленным требованиям, из нее отбирается выборка. По результатам контроля выборки делается заключение о всей партии. В этом случае очень важно избежать субъективизма при формировании выборки, т.е необходимо, чтобы каждая единица продукции в контролируемой партии имела одинаковую вероятность быть отобранной в выборку. В производственных условиях отбор единиц продукции в выборку обычно осуществляют не с помощью жребия, а по специальным таблицам случайных чисел или с помощью компьютерных датчиков случайных чисел.

Аналогичные проблемы обеспечения объективности сравнения возникают при сопоставлении различных схем организации производства, оплаты труда, при проведении тендеров и конкурсов, подбора кандидатов на вакантные должности и т.п. Всюду нужна жеребьевка или подобные ей процедуры. Поясним на примере выявления наиболее сильной и второй по силе команды при организации турнира по олимпийской системе (проигравший выбывает). Пусть всегда более сильная команда побеждает более слабую. Ясно, что самая сильная команда однозначно станет чемпионом. Вторая по силе команда выйдет в финал тогда и только тогда, когда до финала у нее не будет игр с будущим чемпионом. Если такая игра будет запланирована, то вторая по силе команда в финал не попадет. Тот, кто планирует турнир, может либо досрочно «выбить» вторую по силе команду из турнира, сведя ее в первой же встрече с лидером, либо обеспечить ей второе место, обеспечив встречи с более слабыми командами вплоть до финала. Чтобы избежать субъективизма, проводят жеребьевку. Для турнира из 8 команд вероятность того, что в финале встретятся две самые сильные команды, равна 4/7. Соответственно с вероятностью 3/7 вторая по силе команда покинет турнир досрочно.

При любом измерении единиц продукции (с помощью штангенциркуля, микрометра, амперметра и т.п.) имеются погрешности. Чтобы выяснить, есть ли систематические погрешности, необходимо сделать многократные измерения единицы продукции, характеристики которой известны (например, стандартного образца). При этом следует помнить, что кроме систематической погрешности присутствует и случайная погрешность.

Поэтому встает вопрос, как по результатам измерений узнать, есть л систематическая погрешность. Если отмечать только, является ли полученная при очередном измерении погрешность положительной или отрицательной, то эту задачу можно свести к предыдущей. Действительно, сопоставим измерение с бросанием монеты, положительную погрешность – с выпадением герба, отрицательную – решетки (нулевая погрешность при достаточном числе делений шкалы практически никогда не встречается). Тогда проверка отсутствия систематической погрешности эквивалентна проверке симметричности монеты.

Целью этих рассуждений является сведение задачи проверки отсутствия систематической погрешности к задаче проверки симметричности монеты. Проведенные рассуждения приводят к так называемому «критерию знаков» в математической статистике.

При статистическом регулировании технологических процессов на основе методов математической статистики разрабатываются правила и планы статистического контроля процессов, направленные на своевременное обнаружение разладки технологических процессов и принятия мер к их наладке и предотвращению выпуска продукции, не соответствующей установленным требованиям. Эти меры нацелены на сокращение издержек производства и потерь от поставки некачественных единиц продукции. При статистическом приемочном контроле на основе методов математической статистики разрабатываются планы контроля качества путем анализа выборок из партий продукции. Сложность заключается в том, чтобы уметь правильно строить вероятностно-статистические модели принятия решений, на основе которых можно ответить на поставленные выше вопросы. В математической статистике для этого разработаны вероятностные модели и методы проверки гипотез, в частности, гипотез о том, что доля дефектных единиц продукции равна определенному числу р 0 , например, р 0 = 0,23 (вспомните слова Струкова из романа А.Н.Толстого).

Задачи оценивания. В ряде управленческих, производственных, экономических, народнохозяйственных ситуаций возникают задачи другого типа – задачи оценки характеристик и параметров распределений вероятностей.

Рассмотрим пример. Пусть на контроль поступила партия из N электроламп. Из этой партии случайным образом отобрана выборка объемом n электроламп. Возникает ряд естественных вопросов. Как по результатам испытаний элементов выборки определить средний срок службы электроламп и с какой точностью можно оценить эту характеристику? Как изменится точность, если взять выборку большего объема? При каком числе часов Т можно гарантировать, что не менее 90% электроламп прослужат Т и более часов?

Предположим, что при испытании выборки объемом n электроламп дефектными оказались Х электроламп. Тогда возникают следующие вопросы. Какие границы можно указать для числа D дефектных электроламп в партии, для уровня дефектности D / N и т.п.?

Или при статистическом анализе точности и стабильности технологических процессов надлежит оценить такие показатели качества, как среднее значение контролируемого параметра и степень его разброса в рассматриваемом процессе. Согласно теории вероятностей в качестве среднего значения случайной величины целесообразно использовать ее математическое ожидание, а в качестве статистической характеристики разброса – дисперсию, среднее квадратическое отклонение или коэффициент вариации. Отсюда возникает вопрос: как оценить эти статистические характеристики по выборочным данным и с какой точностью это удается сделать? Аналогичных примеров можно привести очень много. Здесь важно было показать, как теория вероятностей и математическая статистика могут быть использованы в производственном менеджменте при принятии решений в области статистического управления качеством продукции.

Что такое «математическая статистика»? Под математической статистикой понимают «раздел математики, посвященный математическим методам сбора, систематизации, обработки и интерпретации статистических данных, а также использование их для научных или практических выводов. Правила и процедуры математической статистики опираются на теорию вероятностей, позволяющую оценить точность и надежность выводов, получаемых в каждой задаче на основании имеющегося статистического материала» . При этом статистическими данными называются сведения о числе объектов в какой-либо более или менее обширной совокупности, обладающих теми или иными признаками.

По типу решаемых задач математическая статистика обычно делится на три раздела: описание данных, оценивание и проверка гипотез.

По виду обрабатываемых статистических данных математическая статистика делится на четыре направления:

Одномерная статистика (статистика случайных величин), в которой результат наблюдения описывается действительным числом;

Многомерный статистический анализ, где результат наблюдения над объектом описывается несколькими числами (вектором);

Статистика случайных процессов и временных рядов, где результат наблюдения – функция;

Статистика объектов нечисловой природы, в которой результат наблюдения имеет нечисловую природу, например, является множеством (геометрической фигурой), упорядочением или получен в результате измерения по качественному признаку.

Исторически первой появились некоторые области статистики объектов нечисловой природы (в частности, задачи оценивания доли брака и проверки гипотез о ней) и одномерная статистика. Математический аппарат для них проще, поэтому на их примере обычно демонстрируют основные идеи математической статистики.

Лишь те методы обработки данных, т.е. математической статистики, являются доказательными, которые опираются на вероятностные модели соответствующих реальных явлений и процессов. Речь идет о моделях поведения потребителей, возникновения рисков, функционирования технологического оборудования, получения результатов эксперимента, течения заболевания и т.п. Вероятностную модель реального явления следует считать построенной, если рассматриваемые величины и связи между ними выражены в терминах теории вероятностей. Соответствие вероятностной модели реальности, т.е. ее адекватность, обосновывают, в частности, с помощью статистических методов проверки гипотез.

Невероятностные методы обработки данных являются поисковыми, их можно использовать лишь при предварительном анализе данных, так как они не дают возможности оценить точность и надежность выводов, полученных на основании ограниченного статистического материала.

Вероятностные и статистические методы применимы всюду, где удается построить и обосновать вероятностную модель явления или процесса. Их применение обязательно, когда сделанные на основе выборочных данных выводы переносятся на всю совокупность (например, с выборки на всю партию продукции).

В конкретных областях применений используются как вероятностно-статистические методы широкого применения, так и специфические. Например, в разделе производственного менеджмента, посвященного статистическим методам управления качеством продукции, используют прикладную математическую статистику (включая планирование экспериментов). С помощью ее методов проводится статистический анализ точности и стабильности технологических процессов и статистическая оценка качества. К специфическим методам относятся методы статистического приемочного контроля качества продукции, статистического регулирования технологических процессов, оценки и контроля надежности и др.

Широко применяются такие прикладные вероятностно-статистические дисциплины, как теория надежности и теория массового обслуживания. Содержание первой из них ясно из названия, вторая занимается изучением систем типа телефонной станции, на которую в случайные моменты времени поступают вызовы - требования абонентов, набирающих номера на своих телефонных аппаратах. Длительность обслуживания этих требований, т.е. длительность разговоров, также моделируется случайными величинами. Большой вклад в развитие этих дисциплин внесли член-корреспондент АН СССР А.Я. Хинчин (1894-1959), академик АН УССР Б.В.Гнеденко (1912-1995) и другие отечественные ученые.

Коротко об истории математической статистики. Математическая статистика как наука начинается с работ знаменитого немецкого математика Карла Фридриха Гаусса (1777-1855), который на основе теории вероятностей исследовал и обосновал метод наименьших квадратов, созданный им в 1795 г. и примененный для обработки астрономических данных (с целью уточнения орбиты малой планеты Церера). Его именем часто называют одно из наиболее популярных распределений вероятностей – нормальное, а в теории случайных процессов основной объект изучения – гауссовские процессы.

В конце XIX в. – начале ХХ в. крупный вклад в математическую статистику внесли английские исследователи, прежде всего К.Пирсон (1857-1936) и Р.А.Фишер (1890-1962). В частности, Пирсон разработал критерий «хи-квадрат» проверки статистических гипотез, а Фишер – дисперсионный анализ, теорию планирования эксперимента, метод максимального правдоподобия оценки параметров.

В 30-е годы ХХ в. поляк Ежи Нейман (1894-1977) и англичанин Э.Пирсон развили общую теорию проверки статистических гипотез, а советские математики академик А.Н. Колмогоров (1903-1987) и член-корреспондент АН СССР Н.В.Смирнов (1900-1966) заложили основы непараметрической статистики. В сороковые годы ХХ в. румын А. Вальд (1902-1950) построил теорию последовательного статистического анализа.

Математическая статистика бурно развивается и в настоящее время. Так, за последние 40 лет можно выделить четыре принципиально новых направления исследований :

Разработка и внедрение математических методов планирования экспериментов;

Развитие статистики объектов нечисловой природы как самостоятельного направления в прикладной математической статистике;

Развитие статистических методов, устойчивых по отношению к малым отклонениям от используемой вероятностной модели;

Широкое развертывание работ по созданию компьютерных пакетов программ, предназначенных для проведения статистического анализа данных.

Вероятностно-статистические методы и оптимизация. Идея оптимизации пронизывает современную прикладную математическую статистику и иные статистические методы. А именно, методы планирования экспериментов, статистического приемочного контроля, статистического регулирования технологических процессов и др. С другой стороны, оптимизационные постановки в теории принятия решений, например, прикладная теория оптимизации качества продукции и требований стандартов, предусматривают широкое использование вероятностно-статистических методов, прежде всего прикладной математической статистики.

В производственном менеджменте, в частности, при оптимизации качества продукции и требований стандартов особенно важно применять статистические методы на начальном этапе жизненного цикла продукции, т.е. на этапе научно-исследовательской подготовки опытно-конструкторских разработок (разработка перспективных требований к продукции, аванпроекта, технического задания на опытно-конструкторскую разработку). Это объясняется ограниченностью информации, доступной на начальном этапе жизненного цикла продукции, и необходимостью прогнозирования технических возможностей и экономической ситуации на будущее. Статистические методы должны применяться на всех этапах решения задачи оптимизации – при шкалировании переменных, разработке математических моделей функционирования изделий и систем, проведении технических и экономических экспериментов и т.д.

В задачах оптимизации, в том числе оптимизации качества продукции и требований стандартов, используют все области статистики. А именно, статистику случайных величин, многомерный статистический анализ, статистику случайных процессов и временных рядов, статистику объектов нечисловой природы. Выбор статистического метода для анализа конкретных данных целесообразно проводить согласно рекомендациям .

Явления жизни, как и вообще все явления материального мира, имеют две неразрывно связанные стороны: качественную, воспринимаемую непосредственно органами чувств, и количественную, выражаемую числами при помощи счета и меры.

При исследовании различных явлений природы применяют одновременно и качественные и количественные показатели. Несомненно, что только в единстве качественной и количественной сторон наиболее полно раскрывается сущность изучаемых явлений. Однако в действительности приходится пользоваться либо теми, либо другими показателями.

Несомненно, что количественные методы как более объективные и точные имеют преимущество перед качественной характеристикой предметов.

Сами по себе результаты измерений, хотя и имеют известное значение, еще недостаточны для того, чтобы сделать из них необходимые выводы. Цифровые данные, собранные в процессе массовых испытаний – это всего лишь сырой фактический материал, который нуждается в соответствующей математической обработке. Без обработки – упорядочения и систематизации цифровых данных не удается извлечь заключенную в них информацию, оценить надежность отдельных суммарных показателей, убедиться в достоверности наблюдаемых между ними различий. Эта работа требует от специалистов определенных знаний, умения правильно обобщать и анализировать собранные в опыте данные. Система этих знаний и составляет содержание статистики – науки, занимающейся главным образом вопросами анализа результатов исследований в теоретической и прикладной областях науки.

Следует иметь ввиду, что математическая статистика и теория вероятностей являются науками сугубо теоретическими, абстрактными; они изучают статистические совокупности безотносительно к специфике входящих в их состав элементов. Методы математической статистики и лежащей в ее основе теории вероятностей приложимы к самым различным областям знания, включая и гуманитарные науки.

Изучение явлений проводятся не по отдельным наблюдениям, которые могут оказаться случайными, нетипичными, неполно выражающими сущность данного явления, а на множестве однородных наблюдений, что дает более полную информацию об изучаемом объекте. Некоторое множество относительно однородных предметов, объединяемых по тому или иному признаку для совместного изучения, называют статистической

совокупностью. Совокупность объединяет какое-то число однородных наблюдений или регистраций.

Элементы, входящие в состав совокупности, называются ее членами, или вариантами. Варианты – это отдельные наблюдения или числовые значения признака. Так, если обозначить признак через Х (большое), то его значения или варианты будут обозначаться через х (малое), т.е. х 1 , х 2 , и т.д.

Общее число вариантов, входящих в состав данной совокупности называется ее объемом и обозначается буквой n (малое).

Когда обследованию подвергается вся совокупность однородных объектов в целом, ее называют общей, генеральной, совокупностью Примером такого рода сплошного описания совокупности могут служить общегосударственные переписи населения, поголовный статистический учет животных в стране. Разумеется, полное обследование генеральной совокупности дает наиболее полноценную информацию о ее состоянии и свойствах. Поэтому естественно стремление исследователей к тому, чтобы в в совокупность объединялось как можно большее число наблюдений.

Однако в действительности редко приходится прибегать к обследованию всех членов генеральной совокупности. Во-первых, потому, что эта работа требует большой затраты времени и труда, а во-вторых, она не всегда осуществима по целому ряду причин и различных обстоятельств. Так что вместо сплошного обследования генеральной совокупности изучению подвергается обычно какая-то ее часть, получившая название выборочной совокупности, или выборки. Она представляет собой тот образец, по которому судят о всей генеральной совокупности в целом. Например, чтобы узнать средний рост призывного населения некоторой области или района, вовсе не обязательно измерять всех призывников, проживающих в данной местности, а достаточно измерить какую-то часть их.

1. Выборка должна быть вполне представительной, или типичной, т.е. чтобы в ее состав входили преимущественно те варианты, которые наиболее полно отражают генеральную совокупность. Поэтому, чтобы приступить к обработке выборочных данных, их внимательно просматривают и удаляют явно нетипичные варианты. Например, при анализе стоимости продукции, выпускаемой предприятием, должна быть исключена стоимость в те периоды, когда предприятие не было в полной мере обеспечено комплектующими или сырьем.

2. Выборка должна быть объективной. При образовании выборки нельзя поступать по произволу, включать в ее состав только те варианты, которые кажутся типичными, а все остальные браковать. Доброкачественная выборка производится без предвзятых мнений, по методу жеребьевки или лотерии, когда ни один из вариантов генеральной совокупности не имеет никаких преимуществ перед остальными – попасть или не попасть в состав выборочной совокупности. Иными словами, выборка должна производиться по принципу случайного отбора, без влияний на ее состав.

3. Выборка должна быть качественно однородной. Нельзя включать в состав одной и той же выборки данные, полученные в разных условиях, например, стоимость изделий, полученных при разной численности работников.

6.2. Группировка результатов наблюдений

Обычно результаты опытов и наблюдений заносятся в виде цифр в учетные карточки или журнал, а иногда просто на листы бумаги – получается ведомость или реестр. Такие первоначальные документы, как правило содержат сведения не об одном, а о нескольких признаках, по которым проводились наблюдения. Эти документы служат основным источником образования выборочной совокупности. Делается это обычно так: на отдельный лист бумаги из первичного документа, т.е. картотеки, журнала или ведомости, выписываются числовые значения того признака, по которому образуется совокупность. Варианты в такой совокупности представлены обычно в виде беспорядочной массы цифр. Поэтому первым шагом на пути обработки такого материала является упорядочение, систематизация его – группировка вариант в статистические таблицы или ряды.

Одной из наиболее распространенных форм группировок выборочных данных служат статистические таблицы. Они имеют иллюстративное значение, показывая какие-то общие итоги, положение отдельных элементов в общей серии наблюдений.

К другой форме первичной группировки выборочных данных относится способ ранжирования, т.е. расположение вариант в определенном порядке – по возрастающими или убывающим значениям признака. В результате получается так называемый ранжированный ряд, который показывает в каких пределах и каким образом варьирует данный признак. Например, имеется выборка следующего состава:

5,2,1,5,7,9,3,5,4,10,4,5,7,3,5, 9,4,12,7,7

Видно, что признак изменяется от 1 до 12 каких-то единиц. Располагаем варианты в возрастающем порядке:

1,2,3,3,4,4,4,5,5,5,5,7,7,7,7,9,9,10,12.,

В результате получился ранжированный ряд значений варьирующего признака.

Совершенно очевидно, что способ ранжирования в том виде, как он здесь показан, применим лишь к выборкам малого объема. При большом числе наблюдений ранжирование затрудняется, т.к. ряд получается настолько длинным, что теряет свое значение.

При большом числе наблюдений ранжировать выборочную совокупность принято в виде двойного ряда, т.е. с указанием частоты или повторяемости отдельных вариант ранжированного ряда. Такой двойной ряд ранжированных значений признака называется вариационным рядом или рядом распределения. Простейшим примером вариационного ряда могут служить ранжированные выше данные, если их расположить следующим образом:

Значения признака

(варианты) 1 2 3 4 5 7 9 10 12

повторяемость

(вариант) частоты 1 1 2 3 5 4 2 1 1

Вариационный ряд показывает, с какой частотой отдельные варианты встречаются в данной совокупности, как они распределяются, что имеет большое значение, позволяя судить о закономерности варьирования и диапазоне вариации количественных признаков. Построение вариационных рядов облегчает вычисление суммарных показателей – средней арифметической и дисперсии или рассеивания вариант около их среднего значения – показателей, которыми характеризуется любая статистическая совокупность.

Вариационные ряды бывают двух видов: прерывистые и непрерывные. Прерывистый вариационный ряд получается при распределении дискретных величин, к которым относятся счетные признаки. Если же признак варьирует непрерывно, т.е. может принимать любые значения в пределах от минимальной до максимальной вариант совокупности, то последняя распределяется в непрерывный вариационный ряд.

Для построения вариационного ряда дискретно варьирующего признака достаточно всю совокупность наблюдений расположить в виде ранжированного ряда, указав частоты отдельных вариантов. В качестве примера приводим данные, показывающие распределение по размеру 267 деталей (табл.5.4)

Таблица 6.1. Распределение деталей по размеру.

Чтобы построить вариационный ряд непрерывно варьирующих признаков, нужно всю вариацию от минимального до максимального варианта разбить на отдельные группы или промежутки (от-до), называемые классами, а затем распределить все варианты совокупности по этим классам. В результате получится двойной вариационный ряд, в котором частоты относятся уже не к отдельным конкретным вариантам, а ко всему интервалу, т.е. оказываются частотами не вариант, а классов.

Разбивка общей вариации на классы производится в масштабе классового интервала, который должен быть одинаковым для всех классов вариационного ряда. Величина классового интервала обозначается через i (от слова intervalum – промежуток, расстояние); она определяется по следующей формуле

, (6.1)

где: i – классовый интервал, который берется целым числом;

- максимальная и минимальная варианты выборки;

lg.n – логарифм числа классов, на которые разбивается выборочная совокупность.

Число классов устанавливается произвольно, но с учетом того обстоятельства, что число классов находится в некоторой зависимости от объема выборки: чем больший объем имеет выборочная совокупность, тем больше должно быть классов, и наоборот – при меньших объемах выборки следует брать и меньшее число классов. Опыт показал, что и на малых выборках, когда приходится группировать варианты в виде вариационного ряда, не следует устанавливать меньше 5-6 классов. При наличии же 100-150 вариант число классов можно довести до 12-15. Если же совокупность состоит из 200-300 вариант, то ее разбивают на 15-18 классов и т.д. Разумеется, эти рекомендации весьма условны и их нельзя принимать как установленное правило.

При разбивке на классы в каждом конкретном случаев приходится считаться с целым рядом различных обстоятельств, добиваясь того, чтобы обработка статистического материала давала наиболее точные результаты.

После того, как установлен классовый интервал и выборочная совокупность разбита на классы, производится разноска вариант по классам и определяются число вариаций (частоты) каждого класса. В результате получается вариационный ряд, в котором частоты относятся не к отдельным вариантам, а к определенным классам. Сумма всех частот вариационного ряда должна равняться объему выборки, то есть

(6.2)

где:
-знак суммирования;

р – частота.

n – объем выборки.

Если такого равенства не оказалось, значит при разноске вариант по классам допущена ошибка, которую необходимо устранить.

Обычно для разноски вариант по классам составляется вспомогательная таблица, в которой имеются четыре графы: 1) классы по данному признаку (от – до); 2) – среднее значение классов, 3) разноски вариант по классам, 4) частоты классов (см. табл. 6.2.)

Разноска вариант по классам требует большого внимания. Нельзя допускать, чтобы одна и та же варианта была отмечена дважды или одинаковые варианты попадали в разные классы. Чтобы избежать ошибок при распределении вариант по классам, рекомендуется не искать одинаковые варианты и в совокупности, а разносить их по классам, что не одно и то же. Игнорирование этого правила, что бывает в работе неопытных исследователей, отнимает много времени при разноске вариант, а главное, приводит к ошибкам.

Таблица 6.2. Разноска вариант по классам

Границы классов

Средние значения классов (х)

Частоты классов (р), %

абсолютные

относительные

Закончив разноску вариант и подсчитав их число для каждого класса, получаем непрерывный вариационный ряд. Его надо превратить в прерывистый вариационный ряд. Для этого, как уже отмечалось, берем полусуммы крайних значений классов. Так, например, срединное значение первого класса, равное 8,8 получено следующим образом:

(8,6+9,0):2=8,8.

Второе значение (9,3) этой графы вычислено аналогичным способом:

(9,01+9,59):2=9,3 и т.д.

В результате получается прерывистый вариационный ряд, показывающий распределение по изучаемому признаку (табл.6.3.)

Таблица 6.3. Вариационный ряд

Группировка выборочных данных в виде вариационного ряда имеет двоякое назначение: во-первых, как вспомогательная операция она необходима при вычислении суммарных показателей, а во-вторых, ряды распределения показывают закономерность варьирования признаков, что очень важно. Чтобы выразить эту закономерность более наглядно, принято изображать вариационные ряды графически в виде гистрограммы (рис.6.1.)


Рис.6.1.Распределение предприятий по числу работников

Гистограмма изображает распределение вариант при непрерывном варьировании признака. Прямоугольники соответствуют классам, а их высота – количеству вариант, заключенных в каждом классе. Если из срединных точек вершин прямоугольников гистограммы опустить перпендикуляры на ось абцисс, а затем эти точки соединить между собой, получится график непрерывного варьирования, называемый полигоном или плотностью распределения.

Как используются теория вероятностей и математическая статистика ? Эти дисциплины - основа вероятностно-статистических методов принятия решений . Чтобы воспользоваться их математическим аппаратом, необходимо задачи принятия решений выразить в терминах вероятностно-статистических моделей. Применение конкретного вероятностно-статистического метода принятия решений состоит из трех этапов:

  • переход от экономической, управленческой, технологической реальности к абстрактной математико-статистической схеме, т.е. построение вероятностной модели системы управления, технологического процесса, процедуры принятия решений , в частности по результатам статистического контроля, и т.п.;
  • проведение расчетов и получение выводов чисто математическими средствами в рамках вероятностной модели;
  • интерпретация математико-статистических выводов применительно к реальной ситуации и принятие соответствующего решения (например, о соответствии или несоответствии качества продукции установленным требованиям, необходимости наладки технологического процесса и т.п.), в частности, заключения (о доле дефектных единиц продукции в партии, о конкретном виде законов распределения контролируемых параметров технологического процесса и др.).

Математическая статистика использует понятия, методы и результаты теории вероятностей. Рассмотрим основные вопросы построения вероятностных моделей принятия решений в экономических, управленческих, технологических и иных ситуациях. Для активного и правильного использования нормативно-технических и инструктивно-методических документов по вероятностно-статистическим методам принятия решений нужны предварительные знания. Так, необходимо знать, при каких условиях следует применять тот или иной документ, какую исходную информацию необходимо иметь для его выбора и применения, какие решения должны быть приняты по результатам обработки данных и т.д.

Примеры применения теории вероятностей и математической статистики . Рассмотрим несколько примеров, когда вероятностно-статистические модели являются хорошим инструментом для решения управленческих, производственных, экономических, народнохозяйственных задач. Так, например, в романе А.Н. Толстого "Хождение по мукам" (т.1) говорится: "мастерская дает двадцать три процента брака, этой цифры вы и держитесь, - сказал Струков Ивану Ильичу".

Встает вопрос, как понимать эти слова в разговоре заводских менеджеров, поскольку одна единица продукции не может быть дефектна на 23%. Она может быть либо годной, либо дефектной. Наверное, Струков имел в виду, что в партии большого объема содержится примерно 23% дефектных единиц продукции. Тогда возникает вопрос, а что значит "примерно"? Пусть из 100 проверенных единиц продукции 30 окажутся дефектными, или из 1000-300, или из 100000-30000 и т.д., надо ли обвинять Струкова во лжи?

Или другой пример. Монетка, которую используют как жребий, должна быть "симметричной", т.е. при ее бросании в среднем в половине случаев должен выпадать герб, а в половине случаев - решетка (решка, цифра). Но что означает "в среднем"? Если провести много серий по 10 бросаний в каждой серии, то часто будут встречаться серии, в которых монетка 4 раза выпадает гербом. Для симметричной монеты это будет происходить в 20,5% серий. А если на 100000 бросаний окажется 40000 гербов, то можно ли считать монету симметричной? Процедура принятия решений строится на основе теории вероятностей и математической статистики.

Рассматриваемый пример может показаться недостаточно серьезным. Однако это не так. Жеребьевка широко используется при организации промышленных технико-экономических экспериментов, например, при обработке результатов измерения показателя качества (момента трения) подшипников в зависимости от различных технологических факторов (влияния консервационной среды, методов подготовки подшипников перед измерением, влияния нагрузки подшипников в процессе измерения и т.п.). Допустим, необходимо сравнить качество подшипников в зависимости от результатов хранения их в разных консервационных маслах, т.е. в маслах состава и . При планировании такого эксперимента возникает вопрос, какие подшипники следует поместить в масло состава , а какие - в масло состава , но так, чтобы избежать субъективизма и обеспечить объективность принимаемого решения.

Ответ на этот вопрос может быть получен с помощью жребия. Аналогичный пример можно привести и с контролем качества любой продукции. Чтобы решить, соответствует или не соответствует контролируемая партия продукции установленным требованиям, делается выборка . По результатам контроля выборки делается заключение обо всей партии. В этом случае очень важно избежать субъективизма при формировании выборки, т.е. необходимо, чтобы каждая единица продукции в контролируемой партии имела одинаковую вероятность быть отобранной в выборку. В производственных условиях отбор единиц продукции в выборку обычно осуществляют не с помощью жребия, а по специальным таблицам случайных чисел или с помощью компьютерных датчиков случайных чисел.

Аналогичные проблемы обеспечения объективности сравнения возникают при сопоставлении различных схем организации производства , оплаты труда, при проведении тендеров и конкурсов, подбора кандидатов на вакантные должности и т.п. Всюду нужна жеребьевка или подобные ей процедуры. Поясним на примере выявления наиболее сильной и второй по силе команд при организации турнира по олимпийской системе (проигравший выбывает). Пусть всегда более сильная команда побеждает более слабую. Ясно, что самая сильная команда однозначно станет чемпионом. Вторая по силе команда выйдет в финал тогда и только тогда, когда до финала у нее не будет игр с будущим чемпионом. Если такая игра будет запланирована, то вторая по силе команда в финал не попадет. Тот, кто планирует турнир, может либо досрочно "выбить" вторую по силе команду из турнира, сведя ее в первой же встрече с лидером, либо обеспечить ей второе место , обеспечив встречи с более слабыми командами вплоть до финала. Чтобы избежать субъективизма, проводят жеребьевку. Для турнира из 8 команд вероятность того, что в финале встретятся две самые сильные команды, равна 4/7. Соответственно с вероятностью 3/7 вторая по силе команда покинет турнир досрочно.

При любом измерении единиц продукции (с помощью штангенциркуля, микрометра, амперметра и т.п.) имеются погрешности. Чтобы выяснить, есть ли систематические погрешности, необходимо сделать многократные измерения единицы продукции, характеристики которой известны (например, стандартного образца). При этом следует помнить, что кроме систематической присутствует и случайная погрешность .

Поэтому встает вопрос, как по результатам измерений узнать, есть ли систематическая погрешность . Если отмечать только, является ли полученная при очередном измерении погрешность положительной или отрицательной, то эту задачу можно свести к предыдущей. Действительно, сопоставим измерение с бросанием монеты, положительную погрешность - с выпадением герба, отрицательную - решетки (нулевая погрешность при достаточном числе делений шкалы практически никогда не встречается). Тогда проверка отсутствия систематической погрешности эквивалентна проверке симметричности монеты.

Целью этих рассуждений является сведение задачи проверки отсутствия систематической погрешности к задаче проверки симметричности монеты. Проведенные рассуждения приводят к так называемому "критерию знаков" в математической статистике.

При статистическом регулировании технологических процессов на основе методов математической статистики разрабатываются правила и планы статистического контроля процессов, направленные на своевременное обнаружение разладки технологических процессов, принятия мер к их наладке и предотвращению выпуска продукции, не соответствующей установленным требованиям. Эти меры нацелены на сокращение издержек производства и потерь от поставки некачественных единиц продукции. При статистическом приемочном контроле на основе методов математической статистики разрабатываются планы контроля качества путем анализа выборок из партий продукции. Сложность заключается в том, чтобы уметь правильно строить вероятностно-статистические модели принятия решений , на основе которых можно ответить на поставленные выше вопросы. В математической статистике для этого разработаны вероятностные модели и методы проверки гипотез, в частности, гипотез о том, что доля дефектных единиц продукции равна определенному числу , например, (вспомните слова Струкова из романа А.Н. Толстого).

Задачи оценивания . В ряде управленческих, производственных, экономических, народнохозяйственных ситуаций возникают задачи другого типа - задачи оценки характеристик и параметров распределений вероятностей.

Рассмотрим пример. Пусть на контроль поступила партия из N электроламп. Из этой партии случайным образом отобрана выборка объемом n электроламп. Возникает ряд естественных вопросов. Как по результатам испытаний элементов выборки определить средний срок службы электроламп и с какой точностью можно оценить эту характеристику? Как изменится точность , если взять выборку большего объема? При каком числе часов можно гарантировать, что не менее 90% электроламп прослужат и более часов?

Предположим, что при испытании выборки объемом электроламп дефектными оказались электроламп. Тогда возникают следующие вопросы. Какие границы можно указать для числа дефектных электроламп в партии, для уровня дефектности и т.п.?

Или при статистическом анализе точности и стабильности технологических процессов надлежит оценить такие показатели качества , как среднее значение контролируемого параметра и степень его разброса в рассматриваемом процессе. Согласно теории вероятностей в качестве среднего значения случайной величины целесообразно использовать ее математическое ожидание, а в качестве статистической характеристики разброса - дисперсию, среднее квадратическое отклонение или коэффициент вариации . Отсюда возникает вопрос: как оценить эти статистические характеристики по выборочным данным и с какой точностью это удается сделать? Аналогичных примеров можно привести очень много. Здесь важно было показать, как теория вероятностей и математическая статистика могут быть использованы в производственном менеджменте при принятии решений в области статистического управления качеством продукции.

Что такое "математическая статистика" ? Под математической статистикой понимают "раздел математики, посвященный математическим методам сбора, систематизации, обработки и интерпретации статистических данных, а также использование их для научных или практических выводов. Правила и процедуры математической статистики опираются на теорию вероятностей, позволяющую оценить точность и надежность выводов, получаемых в каждой задаче на основании имеющегося статистического материала" [ [ 2.2 ] , с. 326]. При этом статистическими данными называются сведения о числе объектов в какой-либо более или менее обширной совокупности, обладающих теми или иными признаками.

По типу решаемых задач математическая статистика обычно делится на три раздела: описание данных, оценивание и проверка гипотез.

По виду обрабатываемых статистических данных математическая статистика делится на четыре направления:

  • одномерная статистика (статистика случайных величин), в которой результат наблюдения описывается действительным числом;
  • многомерный статистический анализ, где результат наблюдения над объектом описывается несколькими числами (вектором);
  • статистика случайных процессов и временных рядов, где результат наблюдения - функция;
  • статистика объектов нечисловой природы, в которой результат наблюдения имеет нечисловую природу, например, является множеством (геометрической фигурой), упорядочением или получен в результате измерения по качественному признаку.

Исторически первыми появились некоторые области статистики объектов нечисловой природы (в частности, задачи оценивания доли брака и проверки гипотез о ней) и одномерная статистика . Математический аппарат для них проще, поэтому на их примере обычно демонстрируют основные идеи математической статистики.

Лишь те методы обработки данных, т.е. математической статистики, являются доказательными, которые опираются на вероятностные модели соответствующих реальных явлений и процессов. Речь идет о моделях поведения потребителей, возникновения рисков, функционирования технологического оборудования, получения результатов эксперимента, течения заболевания и т.п. Вероятностную модель реального явления следует считать построенной, если рассматриваемые величины и связи между ними выражены в терминах теории вероятностей. Соответствие вероятностной модели реальности, т.е. ее адекватность , обосновывают, в частности, с помощью статистических методов проверки гипотез.

Невероятностные методы обработки данных являются поисковыми, их можно использовать лишь при предварительном анализе данных, так как они не дают возможности оценить точность и надежность выводов, полученных на основании ограниченного статистического материала.

Вероятностные и статистические методы применимы всюду, где удается построить и обосновать вероятностную модель явления или процесса. Их применение обязательно, когда сделанные на основе выборочных данных выводы переносятся на всю совокупность (например, с выборки на всю партию продукции).

В конкретных областях применений используются как вероятностно- статистические методы широкого применения, так и специфические. Например, в разделе производственного менеджмента, посвященного статистическим методам управления качеством продукции, используют прикладную математическую статистику (включая планирование экспериментов). С помощью ее методов проводится статистический анализ точности и стабильности технологических процессов и статистическая оценка качества. К специфическим относятся методы статистического приемочного контроля качества продукции, статистического регулирования технологических процессов, оценки и контроля надежности и др.

Широко применяются такие прикладные вероятностно-статистические дисциплины, как теория надежности и теория массового обслуживания. Содержание первой из них ясно из названия, вторая занимается изучением систем типа телефонной станции, на которую в случайные моменты времени поступают вызовы - требования абонентов, набирающих номера на своих телефонных аппаратах. Длительность обслуживания этих требований, т.е. длительность разговоров, также моделируется случайными величинами. Большой вклад в развитие этих дисциплин внесли член-корреспондент АН СССР А.Я. Хинчин (1894-1959), академик АН УССР Б.В. Гнеденко (1912-1995) и другие отечественные ученые.

Коротко об истории математической статистики . Математическая статистика как наука начинается с работ знаменитого немецкого математика Карла Фридриха Гаусса (1777-1855), который на основе теории вероятностей исследовал и обосновал метод наименьших квадратов , созданный им в 1795 г. и примененный для обработки астрономических данных (с целью уточнения орбиты малой планеты Церера). Его именем часто называют одно из наиболее популярных распределений вероятностей - нормальное, а в теории случайных процессов основной объект изучения - гауссовские процессы.

В конце XIX в. - начале ХХ в. крупный вклад в математическую статистику внесли английские исследователи, прежде всего К. Пирсон (1857-1936) и Р.А. Фишер (1890-1962). В частности, Пирсон разработал критерий "хи-квадрат" проверки статистических гипотез, а Фишер - дисперсионный анализ , теорию планирования эксперимента, метод максимального правдоподобия оценки параметров.

В 30-е годы ХХ в. поляк Ежи Нейман (1894-1977) и англичанин Э. Пирсон развили общую теорию проверки статистических гипотез, а советские математики академик А.Н. Колмогоров (1903-1987) и член-корреспондент АН СССР Н.В. Смирнов (1900-1966) заложили основы непараметрической статистики. В сороковые годы ХХ в. румын А. Вальд (1902-1950) построил теорию последовательного статистического анализа.

Математическая статистика бурно развивается и в настоящее время. Так, за последние 40 лет можно выделить четыре принципиально новых направления исследований [ [ 2.16 ] ]:

  • разработка и внедрение математических методов планирования экспериментов;
  • развитие статистики объектов нечисловой природы как самостоятельного направления в прикладной математической статистике;
  • развитие статистических методов, устойчивых по отношению к малым отклонениям от используемой вероятностной модели;
  • широкое развертывание работ по созданию компьютерных пакетов программ, предназначенных для проведения статистического анализа данных.

Вероятностно-статистические методы и оптимизация . Идея оптимизации пронизывает современную прикладную математическую статистику и иные статистические методы . А именно - методы планирования экспериментов, статистического приемочного контроля, статистического регулирования технологических процессов и др. С другой стороны, оптимизационные постановки в теории принятия решений , например, прикладная теория оптимизации качества продукции и требований стандартов, предусматривают широкое использование вероятностно-статистических методов, прежде всего прикладной математической статистики.

В производственном менеджменте, в частности, при оптимизации качества продукции и требований стандартов особенно важно применять статистические методы на начальном этапе жизненного цикла продукции, т.е. на этапе научно-исследовательской подготовки опытно-конструкторских разработок (разработка перспективных требований к продукции, аванпроекта, технического задания на опытно-конструкторскую разработку). Это объясняется ограниченностью информации, доступной на начальном этапе жизненного цикла продукции, и необходимостью прогнозирования технических возможностей и экономической ситуации на будущее. Статистические методы должны применяться на всех этапах решения задачи оптимизации - при шкалировании переменных, разработке математических моделей функционирования изделий и систем, проведении технических и экономических экспериментов и т.д.

В задачах оптимизации, в том числе оптимизации качества продукции и требований стандартов, используют все области статистики. А именно - статистику случайных величин, многомерный статистический анализ , статистику случайных процессов и временных рядов, статистику объектов нечисловой природы. Выбор статистического метода для анализа конкретных данных целесообразно проводить согласно рекомендациям [

В соответствии с тремя основными возможностями - принятие решения в условиях полной определенности, риска и неопределенности - методы и алгоритмы принятия решения можно разделить на три основных вида: аналитические, статистические и основанные на нечеткой формализации. В каждом конкретном случае метод принятия решения выбирается, исходя из поставленной задачи, доступных исходных данных, имеющихся моделей задачи, среды принятия решения, процесса принятия решения, требуемой точности решения, личных предпочтений аналитика.

В некоторых информационных системах процесс выбора алгоритма может быть автоматизирован:

В соответствующей автоматизированной системе заложена возможность использования множества разнотипных алгоритмов (библиотека алгоритмов);

Система в диалоговом режиме предлагает пользователю ответить на ряд вопросов об основных характеристиках рассматриваемой задачи;

По результатам ответов пользователя система предлагает наиболее подходящий (в соответствии с заданными в ней критериями) алгоритм из библиотеки.

2.3.1 Вероятностно-статистические методы принятия решения

Вероятностно-статистические методы принятия решения (МПР) используются в том случае, когда эффективность принимаемых решений зависит от факторов, представляющих собой случайные величины, для которых известны законы распределения вероятностей и другие статистические характеристики. При этом каждое решение может привести к одному из множества возможных исходов, причем каждый исход имеет определенную вероятность появления, которая может быть рассчитана. Показатели, характеризующие проблемную ситуацию, также описываются с помощью вероятностных характеристик.При таких ЗПР ЛПР всегда рискует получить не тот результат, на который ориентируется, выбирая оптимальное решение на основе осредненных статистических характеристик случайных факторов, то есть решение принимается в условиях риска.

На практике вероятностные и статистических методы часто применяются, когда сделанные на основе выборочных данных выводы переносятся на всю совокупность (например, с выборки на всю партию продукции). Однако при этом в каждой конкретной ситуации следует предварительно оценить принципиальную возможность получения достаточно достоверных вероятностных и статистических данных.

При использовании идей и результатов теории вероятностей и математической статистики при принятии решений базой является математическая модель, в которой объективные соотношения выражены в терминах теории вероятностей. Вероятности используются прежде всего для описания случайности, которую необходимо учитывать при принятии решений. Имеются в виду как нежелательные возможности (риски), так и привлекательные («счастливый случай»).

Суть вероятностно-статистических методов принятия решений состоит в использовании вероятностных моделей на основе оценивания и проверки гипотез с помощью выборочных характеристик .

Подчеркнем, что логика использования выборочных характеристик для принятия решений на основе теоретических моделей предполагает одновременное использование двух параллельных рядов понятий – относящиеся к теории (вероятностной модели) и относящиеся к практике (выборке результатов наблюдений). Например, теоретической вероятности соответствует частота, найденная по выборке. Математическому ожиданию (теоретический ряд) соответствует выборочное среднее арифметическое (практический ряд). Как правило, выборочные характеристики являются оценками теоретических характеристик.

К преимуществам использования этих методов относится возможность учета различных сценариев развития событий и их вероятностей. Недостатком этих методов является то, что используемые в расчетах значения вероятностей развития сценариев обычно практически очень трудно получить.

Применение конкретного вероятностно-статистического метода принятия решений состоит из трех этапов:

Переход от экономической, управленческой, технологической реальности к абстрактной математико-статистической схеме, т.е. построение вероятностной модели системы управления, технологического процесса, процедуры принятия решений, в частности по результатам статистического контроля, и т.п.

Проведение расчетов и получение выводов чисто математическими средствами в рамках вероятностной модели;

Интерпретация математико-статистических выводов применительно к реальной ситуации и принятие соответствующего решения (например, о соответствии или несоответствии качества продукции установленным требованиям, необходимости наладки технологического процесса и т.п.), в частности, заключения (о доле дефектных единиц продукции в партии, о конкретном виде законов распределения контролируемых параметров технологического процесса и др.).

Вероятностную модель реального явления следует считать построенной, если рассматриваемые величины и связи между ними выражены в терминах теории вероятностей. Адекватность вероятностной модели обосновывают, в частности, с помощью статистических методов проверки гипотез.

Математическая статистика по типу решаемых задач обычно делится на три раздела: описание данных, оценивание и проверка гипотез. По виду обрабатываемых статистических данных математическая статистика делится на четыре направления:

Одномерная статистика (статистика случайных величин), в которой результат наблюдения описывается действительным числом;

Многомерный статистический анализ, где результат наблюдения над объектом описывается несколькими числами (вектором);

Статистика случайных процессов и временных рядов, где результат наблюдения – функция;

Статистика объектов нечисловой природы, в которой результат наблюдения имеет нечисловую природу, например, является множеством (геометрической фигурой), упорядочением или получен в результате измерения по качественному признаку.

Пример, когда целесообразно использовать вероятностно-статистические модели.

При контроле качества любой продукции для принятии решения о том соответствует ли выпускаемая партия продукции установленным требованиям, из нее отбирается выборка. По результатам контроля выборки делается заключение о всей партии. В этом случае очень важно избежать субъективизма при формировании выборки, т.е необходимо, чтобы каждая единица продукции в контролируемой партии имела одинаковую вероятность быть отобранной в выборку. Выбор на основании жребия в такой ситуации не является достаточно объективным. Поэтому в производственных условиях отбор единиц продукции в выборку обычно осуществляют не с помощью жребия, а по специальным таблицам случайных чисел или с помощью компьютерных датчиков случайных чисел.

При статистическом регулировании технологических процессов на основе методов математической статистики разрабатываются правила и планы статистического контроля процессов, направленные на своевременное обнаружение разладки технологических процессов и принятия мер к их наладке и предотвращению выпуска продукции, не соответствующей установленным требованиям. Эти меры нацелены на сокращение издержек производства и потерь от поставки некачественных единиц продукции. При статистическом приемочном контроле на основе методов математической статистики разрабатываются планы контроля качества путем анализа выборок из партий продукции. Сложность заключается в том, чтобы уметь правильно строить вероятностно-статистические модели принятия решений, на основе которых можно ответить на поставленные выше вопросы. В математической статистике для этого разработаны вероятностные модели и методы проверки гипотез3.

Кроме того, в ряде управленческих, производственных, экономических, народнохозяйственных ситуаций возникают задачи другого типа – задачи оценки характеристик и параметров распределений вероятностей.

Или при статистическом анализе точности и стабильности технологических процессов надлежит оценить такие показатели качества, как среднее значение контролируемого параметра и степень его разброса в рассматриваемом процессе. Согласно теории вероятностей в качестве среднего значения случайной величины целесообразно использовать ее математическое ожидание, а в качестве статистической характеристики разброса – дисперсию, среднее квадратическое отклонение или коэффициент вариации. Отсюда возникает вопрос: как оценить эти статистические характеристики по выборочным данным и с какой точностью это удается сделать? Аналогичных примеров в литературе много. Все они показывают, как теория вероятностей и математическая статистика могут быть использованы в производственном менеджменте при принятии решений в области статистического управления качеством продукции.

В конкретных областях применений используются как вероятностно-статистические методы широкого применения, так и специфические. Например, в разделе производственного менеджмента, посвященного статистическим методам управления качеством продукции, используют прикладную математическую статистику (включая планирование экспериментов). С помощью ее методов проводится статистический анализ точности и стабильности технологических процессов и статистическая оценка качества. К специфическим методам относятся методы статистического приемочного контроля качества продукции, статистического регулирования технологических процессов, оценки и контроля надежности и др.

В производственном менеджменте, в частности, при оптимизации качества продукции и обеспечения соответствия требованиям стандартов особенно важно применять статистические методы на начальном этапе жизненного цикла продукции, т.е. на этапе научно-исследовательской подготовки опытно-конструкторских разработок (разработка перспективных требований к продукции, аванпроекта, технического задания на опытно-конструкторскую разработку). Это объясняется ограниченностью информации, доступной на начальном этапе жизненного цикла продукции, и необходимостью прогнозирования технических возможностей и экономической ситуации на будущее.

Наиболее распространенными вероятностно-статистическими методами являются регрессионный анализ, факторный анализ, дисперсионный анализ, статистические методы оценки риска, метод сценариев и т.д. Все большее значение приобретает область статистических методов, посвященная анализу статистических данных нечисловой природы, т.е. результатов измерений по качественным и разнотипным признакам. Одно из основных применений статистики объектов нечисловой природы - теория и практика экспертных оценок, связанные с теорией статистических решений и проблемами голосования.

Роль человека при решении задач методами теории статистических решений заключается в постановке задачи, т. е. в приведении реальной задачи к соответствующей типовой, в определении вероятностей событий на основе статистических данных, а также в утверждении получаемого оптимального решения.

 


Читайте:



Понятие и признаки общества

Понятие и признаки общества

Мы все живем на одной планете. Нас сегодня уже семь миллиардов. Знаете, что нас всех объединяет? Оказывается, мы все являемся частью общества. Что...

Основные понятия теории вероятностей Значение е теория вероятности

Основные понятия теории вероятностей Значение е теория вероятности

Мама мыла раму Под занавес продолжительных летних каникул пришло время потихоньку возвращаться к высшей математике и торжественно открыть пустой...

Set out — английский фразовый глагол

Set out — английский фразовый глагол

Помним, что глагол set является неправильным . Все его три формы (формы настоящего и прошедшего времени, а также причастие прошедшего времени)...

Общая биология для студентов

Общая биология для студентов

Частный преподаватель Стаж 6 лет от 1 400 руб / час свободен Связаться Репетитор по биологии Я готовлю учащихся к экзаменам (ОГЭ и ЕГЭ/...

feed-image RSS