Главная - Бах Ричард
Какими фигурами являются боковые ребра призмы. Призма (геометрия). Виды треугольных призм

Раздел математики, занимающийся изучением свойств различных фигур (точек, линий, углов, двумерных и трехмерных объектов), их размеров и взаимного расположения. Для удобства преподавания геометрию подразделяют на планиметрию и стереометрию. В… … Энциклопедия Кольера

Геометрия пространств размерности, большей трех; термин применяется к тем пространствам, геометрия к рых была первоначально развита для случая трех измерений и только потом обобщена на число измерений n>3, прежде всего евклидово пространство,… … Математическая энциклопедия

N мерная евклидова геометрия обобщение евклидовой геометрии на пространство большего числа измерений. Хотя физическое пространство является трёхмерным, и человеческие органы чувств рассчитаны на восприятие трёх измерений, N мерная… … Википедия

У этого термина существуют и другие значения, см. Пирамидацу (значения). Достоверность этого раздела статьи поставлена под сомнение. Необходимо проверить точность фактов, изложенных в этом разделе. На странице обcуждения могут быть пояснения … Википедия

- (Constructive Solid Geometry, CSG) технология, используемая в моделировании твёрдых тел. Конструктивная блочная геометрия зачастую, но не всегда, является способом моделирования в трёхмерной графике и САПР. Она позволяет создать сложную сцену или … Википедия

Конструктивная блочная геометрия (Constructive Solid Geometry, CSG) технология, используемая в моделировании твёрдых тел. Конструктивная блочная геометрия зачастую, но не всегда, является способом моделирования в трёхмерной графике и САПР. Она… … Википедия

У этого термина существуют и другие значения, см. Объём (значения). Объём это аддитивная функция от множества (мера), характеризующая вместимость области пространства, которую оно занимает. Изначально возникло и применялось без строгого… … Википедия

Куб Тип Правильный многогранник Грань квадрат Вершин Рёбер Граней … Википедия

Объём это аддитивная функция от множества (мера), характеризующая вместимость области пространства, которую оно занимает. Изначально возникло и применялось без строгого определения в отношении трёхмерных тел трёхмерного евклидова пространства.… … Википедия

Часть пространства, ограниченная совокупностью конечного числа плоских многоугольников (см. ГЕОМЕТРИЯ), соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого… … Энциклопедия Кольера

Диагональные сечения Сечение призмы плоскостью, проходящей через диагональ основания и два прилежащих к ней боковых ребра, называется диагональным сечением призмы. Сечение пирамиды плоскостью, проходящей через диагональ основания и вершину, называется диагональным сечением пирамиды. Пусть плоскость пересекает пирамиду и параллельна ее основанию. Часть пирамиды, заключенная между этой плоскостью и основанием, называется усеченной пирамидой. Сечение пирамиды также называется основанием усеченной пирамиды.

Построение сечений При построении сечений многогранников, базовыми являются построения точки пересечения прямой и плоскости, а также линии пересечения двух плоскостей. Если даны две точки A и B прямой и известны их проекции A’ и B’ на плоскость, то точкой С пересечения данных прямой и плоскости будет точка пересечения прямых AB и A’B’ Если даны три точки A, B, C плоскости и известны их проекции A’, B’, C’ на другую плоскость, то для нахождения линии пересечения этих плоскостей находят точки P и Q пересечения прямых AB и AC со второй плоскостью. Прямая PQ будет искомой линией пересечения плоскостей.

Упражнение 1 Постройте сечение куба плоскостью, проходящей через точки E, F, лежащие на ребрах куба и вершину B. Решение. Для построения сечения куба, проходящего через точки E, F и вершину B, Соединим отрезками точки E и B, F и B. Через точки E и F проведем прямые, параллельные BF и BE, соответственно. Полученный параллелограмм BFGE будет искомым сечением.

Упражнение 2 Постройте сечение куба плоскостью, проходящей через точки E, F, G , лежащие на ребрах куба. Решение. Для построения сечения куба, проходящего через точки E, F, G, проведем прямую EF и обозначим P её точку пересечения с AD. Обозначим Q точку пересечения прямых PG и AB. Соединим точки E и Q, F и G. Полученная трапеция EFGQ будет искомым сечением.

Упражнение 3 Постройте сечение куба плоскостью, проходящей через точки E, F, G , лежащие на ребрах куба. Решение. Для построения сечения куба, проходящего через точки E, F, G, проведем прямую EF и обозначим P её точку пересечения с AD. Обозначим Q, R точки пересечения прямой PG с AB и DC. Обозначим S точку пересечения FR c СС 1. Соединим точки E и Q, G и S. Полученный пятиугольник EFSGQ будет искомым сечением.

Упражнение 4 Постройте сечение куба плоскостью, проходящей через точки E, F, G , лежащие на ребрах куба. Решение. Для построения сечения куба, проходящего через точки E, F, G, найдем точку P пересечения прямой EF и плоскости грани ABCD. Обозначим Q, R точки пересечения прямой PG с AB и CD. Проведем прямую RF и обозначим S, T её точки пересечения с CC 1 и DD 1. Проведем прямую TE и обозначим U её точку пересечения с A 1 D 1. Соединим точки E и Q, G и S, U и F. Полученный шестиугольник EUFSGQ будет искомым сечением.

Упражнение 5 Постройте сечение куба плоскостью, проходящей через точки E, F, G, принадлежащие граням BB 1 C 1 C, CC 1 D 1 D, AA 1 B 1 B, соответственно. Решение. Из данных точек опустим перпендикуляры EE’, FF’, GG’ на плоскость грани ABCD, и найдем точки I и H пересечения прямых FE и FG с этой плоскостью. IH будет линией пересечения искомой плоскости и плоскости грани ABCD. Обозначим Q, R точки пересечения прямой IH с AB и BC. Проведем прямые PG и QE и обозначим R, S их точки пересечения с AA 1 и CC 1. Проведем прямые SU, UV и RV, параллельные PR, PQ и QS. Полученный шестиугольник RPQSUV будет искомым сечением.

Упражнение 6 Постройте сечение куба плоскостью, проходящей через точки E, F, лежащие на ребрах куба, параллельно диагонали BD. Решение. Проведем прямые FG и EH, параллельные BD. Проведем прямую FP, параллельную EG, и соединим точки P и G. Соединим точки E и G, F и H. Полученный пятиугольник EGPFH будет искомым сечением.

Постройте сечение призмы ABCA 1 B 1 C 1 плоскостью, проходящей через точки E, F, G. Упражнение 8 Решение. Соединим точки E и F. Проведем прямую FG и ее точку пересечения с CC 1 обозначим H. Проведем прямую EH и ее точку пересечения с A 1 C 1 обозначим I. Соединим точки I и G. Полученный четырехугольник EFGI будет искомым сечением.

Постройте сечение призмы ABCA 1 B 1 C 1 плоскостью, проходящей через точки E, F, G. Упражнение 9 Решение. Проведем прямую EG и обозначим H и I ее точки пересечения с CC 1 и AC. Проведем прямую IF и ее точку пересечения с AB обозначим K. Проведем прямую FH и ее точку пересечения с B 1 C 1 обозначим L. Соединим точки E и K, G и L. Полученный пятиугольник EKFLG будет искомым сечением.

Постройте сечение призмы ABCA 1 B 1 C 1 плоскостью, параллельной AC 1, проходящей через точки D 1. Упражнение 10 Решение. Через точку D проведем прямую параллельную AC 1 и обозначим E ее точку пересечения с прямой BC 1. Эта точка будет принадлежать плоскости грани ADD 1 A 1. Проведем прямую DE и обозначим F ее точку пересечения с ребром BC. Соединим отрезком точки F и D. Через точку D проведем прямую параллельную прямой FD и обозначим G точку ее пересечения с ребром A 1 C 1, H – точку ее пересечения с прямой A 1 B 1. Проведем прямую DH и обозначим P ее точку пересечения с ребром AA 1. Соединим отрезком точки P и G. Полученный четырехугольник EFIK будет искомым сечением.

Построить сечение призмы ABCA 1 B 1 C 1 плоскостью, проходящей через точки E на ребре BC, F на грани ABB 1 A 1 и G на грани ACC 1 A 1. Упражнение 11 Решение. Проведем прямую GF и найдем точку H ее пересечения с плоскостью ABC. Проведем прямую EH, и обозначим P и I ее точки пересечения с AC и AB. Проведем прямые PG и IF, и обозначим S, R и Q их точки пересечения с A 1 C 1, A 1 B 1 и BB 1. Соединим точки E и Q, S и R. Полученный пятиугольник EQRSP будет искомым сечением.

Построить сечение правильной шестиугольной призмы плоскостью, проходящей через точки A, B, D 1. Упражнение 12 Решение. Заметим, что сечение будет проходить через точку E 1. Проведем прямую AB и найдем ее точки пересечения K и L с прямыми CD и FE. Проведем прямые KD 1, LE 1 и найдем их точки пересечения P, Q с прямыми CC 1 и FF 1. Шестиугольник ABPD 1 E 1 Q будет искомым сечением.

Построить сечение правильной шестиугольной призмы плоскостью, проходящей через точки A, B’, F’. Упражнение 13 Решение. Проведем отрезки AB’ и AF’. Через точку B’ проведем прямую, параллельную AF’, и ее точку пересечения с EE 1 обозначим E’. Через точку F’ проведем прямую, параллельную AB’, и ее точку пересечения с CC 1 обозначим C’. Через точки E’ и C’ проведем прямые, параллельные AB’ и AF’, и их точки пересечения с D 1 E 1 и C 1 D 1 обозначим D’, D”. Соединим точки B’, C’; D’, D”; F’, E’. Полученный семиугольник AB’C’D”D’E’F’ будет искомым сечением.

Построить сечение правильной шестиугольной призмы плоскостью, проходящей через точки F’, B’, D’. Упражнение 14 Решение. Проведем прямые F’B’ и F’D’, и найдем их точки пересечения P и Q с плоскостью ABC. Проведем прямую PQ. Обозначим R точку пересечения PQ и FC. Точку пересечения F’R и CC 1 обозначим C’. Соединим точки B’, C’ и C’, D’. Через точку F’ проведем прямые, параллельные C’D’ и B’C’, и их точки пересечения с AA 1 и EE 1 обозначим A’ и E’. Соединим точки A’, B’ и E’, D’. Полученный шестиугольник A’B’C’D’E’F’ будет искомым сечением.

Ответ на этот вопрос "что такое призма?", как в случае с любым геометрическим термином, становится понятен, если изучить свойства данного объекта. Конечно, можно заучить сложный научный термин, согласно которому призма - один из видов многогранников, основания которого параллельны, а боковые грани являются параллелограммами, однако проще запомнить свойства объекта и тогда можно будет даже самостоятельно сформулировать понятие призмы.

Элементы призмы

Довольно простые свойства призмы сложно понять, не изучив предварительно ряд терминов, которые применяются для обозначения тех или иных элементов данного геометрического тела. Выделяют следующие элементы призмы:

  • Каждая призма имеет два основания, они являются многоугольниками и расположены в параллельных плоскостях.
  • Боковые грани - все грани призмы (за исключением оснований).
  • Боковая поверхность - совокупность боковых граней.
  • Полная поверхность - совокупность боковых граней и оснований.
  • Боковые ребра - общие для боковых граней стороны.
  • Высота - отрезок, проведенный от одного основания к другому перпендикулярно плоскостям, в которых они расположены.
  • Диагональ - отрезок, проведенный из одной вершины призмы к другой.
  • Диагональная плоскость - плоскость, которая проходит через одно из боковых ребер призмы и диагональ одного из оснований.
  • Диагональное сечение - сечение, образуемое пересечением призмы и диагональной плоскости.
  • Ортогональное сечение - сечение, образуемое пересечением призмы и плоскости, которая перпендикулярна боковому ребру.
  • Развертка призмы - представление всех граней призмы на одной плоскости без искажения размеров граней.

Свойства призмы

Теперь, когда вы знакомы с элементами призмы, можно рассмотреть ее основные свойства, а также формулы, позволяющие находить объем и площадь фигуры:

  • Основания призмы представляют собой равные многоугольники.
  • Боковые грани призмы - параллелограммы.
  • Все боковые ребра призмы равны между собой и параллельны.
  • Ортогональное сечение перпендикулярно всем боковым ребрам.

Формулы для вычисления площади и объема

Для нахождения объема призмы существует очень простая формула: V = S*h, где S - площадь призмы, h - высота.

Чтобы найти площадь полной поверхности призмы, необходимо найти площадь ее боковой поверхности и умножить полученную величину на удвоенную площадь основания. В свою очередь, для нахождения площади боковой поверхности можно использовать формулу: S = P*l, где P - периметр перпендикулярного сечения, l - длина бокового ребра.

Особые виды призмы

Некоторые призмы имеют особые отличительные свойства, и для них придуманы специальные названия:

  • параллелепипед (признак - параллелограммы в основании);
  • прямая призма (признак - боковые ребра перпендикулярны основаниям);
  • правильная призма (признак - многоугольник с равными сторонами и углами в основании, прямоугольники в основаниях);
  • полуправильная призма (признак - квадраты в основаниях).

Призма в оптике

В оптике призмой называют объект в форме геометрического тела (призмы), выполненный из прозрачного материала. Свойства призм широко используются в оптике, в частности, в биноклях. В призматических биноклях применяются двойная призма Порро и призма Аббе, названные так в честь своих изобретателей. Эти призмы за счет особой структуры и расположения создают тот или иной оптический эффект.

Призма Порро - это призма, в основании которой лежит равнобедренный треугольник. Двойная призма Порро создается благодаря особому расположению в пространстве двух призм Порро. Двойная призма Порро позволяет переворачивать изображение, увеличивать оптическое расстояние между объективом и окуляром, сохраняя внешние габариты.

Призма Аббе - это призма, в основании которой лежит треугольник с углами - 30 о, 60 о, 90 о. призма Аббе используется, когда необходимо перевернуть изображение без отклонения линии взгляда на объект.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Определение 1. Многогранник, две грани которого - одноименные многоугольники, лежащие в параллельных плоскостях, а любые два ребра, не лежащие в этих плоскостях, параллельны, называется призмой. Термин “призма” греческого происхождения и буквально означает “отпиленное” (тело). Многоугольники, лежащие в параллельных плоскостях, называют основаниями призмы, а остальные грани - боковыми гранями. Поверхность призмы, таким образом, состоит из двух равных многоугольников (оснований) и параллелограммов (боковых граней). Различают призмы треугольные, четырехугольные, пятиугольные и т.д. в зависимости от числа вершин основания.

3 слайд

Описание слайда:

Все призмы делятся на прямые и наклонные. (рис. 2) Если боковое ребро призмы перпендикулярно плоскости ее основания, то такую призму называют прямой; если боковое ребро призмы перпендикулярно плоскости ее основания, то такую призму называют наклонной. У прямой призмы боковые грани - прямоугольники. Перпендикуляр к плоскостям оснований, концы которого принадлежат этим плоскостям, называют высотой призмы.

4 слайд

Описание слайда:

Свойства призмы. 1. Основания призмы являются равными многоугольниками. 2. Боковые грани призмы являются параллелограммами. 3. Боковые ребра призмы равны.

5 слайд

Описание слайда:

Площадь поверхности призмы и площадь боковой поверхности призмы. Поверхность многогранника состоит из конечного числа многоугольников (граней). Площадь поверхности многогранника есть сумма площадей всех его граней. Площадь поверхности призм (Sпр) равна сумме площадей ее боковых граней (площади боковой поверхности Sбок) и площадей двух оснований (2Sосн) - равных многоугольников: Sпов=Sбок+2Sосн. Теорема. Площадь боковой поверхности призмы равна произведению периметра ее перпендикулярного сечения и длины бокового ребра.

6 слайд

Описание слайда:

Доказательство. Боковые грани прямой призмы - прямоугольники, основания которых-стороны основания призмы, а высоты равны высоте h призмы. Sбок поверхности призмы равна сумме S указанных треугольников, т.е. равна сумме произведений сторон основания на высоту h. Вынося множитель h за скобки, получим в скобках сумму сторон основания призмы, т.е. периметр P. Итак, Sбок =Ph. Теорема доказана. Следствие. Площадь боковой поверхности прямой призмы равна произведению периметра ее основания и высоты. Действительно, у прямой призмы основание можно рассматривать как перпендикулярное сечение, а боковое ребро есть высота.

7 слайд

Описание слайда:

Сечение призмы 1. Сечение призмы плоскостью, параллельной основанию. В сечении образуется многоугольник, равный многоугольнику, лежащему в основании. 2. Сечение призмы плоскостью, проходящей через два не соседних боковых ребра. В сечении образуется параллелограмм. Такое сечение называется диагональным сечением призмы. В некоторых случаях может получаться ромб, прямоугольник или квадрат.

8 слайд

Описание слайда:

9 слайд

Описание слайда:

Определение 2. Прямая призма, основанием которой служит правильный многоугольник, называется правильной призмой. Свойства правильной призмы 1. Основания правильной призмы являются правильными многоугольниками. 2. Боковые грани правильной призмы являются равными прямоугольниками. 3. Боковые ребра правильной призмы равны.

10 слайд

Описание слайда:

Сечение правильной призмы. 1. Сечение правильной призмы плоскостью, параллельной основанию. В сечении образуется правильный многоугольник, равный многоугольнику, лежащему в основании. 2. Сечение правильной призмы плоскостью, проходящей через два не соседних боковых ребра. В сечении образуется прямоугольник. В некоторых случаях может образоваться квадрат.

11 слайд

Описание слайда:

Симметрия правильной призмы 1. Центр симметрии при четном числе сторон основания - точка пересечения диагоналей правильной призмы (рис. 6)

Треугольная призма — это трехмерное тело, образованное соединением прямоугольников и треугольников. В этом уроке вы узнаете, как найти размер внутри (объем) и снаружи (площадь поверхности) треугольной призмы.

Треугольная призма — это пятигранник, образованный двумя параллельными плоскостями, в которых расположены два треугольника, образующих две грани призмы, и оставшиеся три грани — параллелограммы, образованные со-сторонами треугольников.

Элементы треугольной призмы

Треугольники ABC и A 1 B 1 C 1 являются основаниями призмы .

Четырехугольники A 1 B 1 BA, B 1 BCC 1 и A 1 C 1 CA являются боковыми гранями призмы .

Стороны граней являются ребрами призмы (A 1 B 1 , A 1 C 1 , C 1 B 1 , AA 1 , CC 1 , BB 1 , AB, BC, AC), всего у треугольной призмы 9 граней.

Высотой призмы называется отрезок перпендикуляра, который соединяет две грани призмы (на рисунке это h).

Диагональю призмы называется отрезок, который имеет концы в двух вершинах призмы, не принадлежащих одной грани. У треугольной призмы такой диагонали провести нельзя.

Площадь основания — это площадь треугольной грани призмы.

— это сумма площадей четырехугольных граней призмы.

Виды треугольных призм

Треугольная призма бывает двух видов: прямая и наклонная.

У прямой призмы боковые грани прямоугольники, а у наклонной боковые грани — параллелограммы (см. рис.)

Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой.

Призма, боковые ребра которой являются наклонными к плоскостям оснований, называется наклонной.

Основные формулы для расчета треугольной призмы

Объем треугольной призмы

Чтобы найти объем треугольной призмы, надо площадь ее основания умножить на высоту призмы.

Объем призмы = площадь основания х высота

V=S осн. h

Площадь боковой поверхности призмы

Чтобы найти площадь боковой поверхности треугольной призмы, надо периметр ее основания умножить на высоту.

Площадь боковой поверхности треугольной призмы = периметр основания х высота

S бок =P осн. h

Площадь полной поверхности призмы

Чтобы найти площадь полной поверхности призмы, надо сложить ее площади оснований и площадь боковой поверхности.

так как S бок =P осн. h, то получим:

S полн.пов. =P осн. h+2S осн

Правильная призма — прямая призма, основанием которой является правильный многоугольник.

Свойства призмы :

Верхнее и нижнее основания призмы – это равные многоугольники.
Боковые грани призмы имеют вид параллелограмма.
Боковые ребра призмы параллельные и равны.

Совет: при расчете треугольной призмы вы должны обратить внимание на используемые единицы. Например, если площадь основания указана в см 2 , то высота должна быть выражена в сантиметрах, а объем — в см 3 . Если площадь основания в мм 2 , то высота должна быть выражена в мм, а объем в мм 3 и т. д.

Пример призмы

В этом примере:
— ABC и DEF составляют треугольные основания призмы
— ABED, BCFE и ACFD являются прямоугольными боковыми гранями
— Боковые края DA, EB и FC соответствуют высоте призмы.
— Точки A, B, C, D, E, F являются вершинами призмы.

Задачи на расчет треугольной призмы

Задача 1 . Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.
Решение: Объем прямой призмы равен V = Sh, где S - площадь основания, а h - боковое ребро. Площадь основания в данном случае это площадь прямоугольного треугольника (его площадь равна половине площади прямоугольника со сторонами 6 и 8). Таким образом, объём равен:

V = 1/2 · 6 · 8 · 5 = 120.

Задача 2.

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы.

Решение:

Объём призмы равен произведению площади основания на высоту: V = S осн ·h.

Треугольник, лежащий в основании исходной призмы подобен треугольнику, лежащему в основании отсечённой призмы. Коэффициент подобия равен 2, так как сечение проведено через среднюю линию (линейные размеры большего треугольника в два раза больше линейных размеров меньшего). Известно, что площади подобных фигур соотносятся как квадрат коэффициента подобия, то есть S 2 = S 1 k 2 = S 1 2 2 = 4S 1 .

Площадь основания всей призмы больше площади основания отсечённой призмы в 4 раза. Высоты обеих призм одинаковы, поэтому объем всей призмы в 4 раза больше объема отсечённой призмы.

Таким образом, искомый объём равен 20.

 


Читайте:



Сочинение My working day на английском с переводом

Сочинение My working day на английском с переводом

«Распорядок дня на английском языке» – одна из самых востребованных тем. Пожалуй, одна из первых, изучаемых в школе и повторяемых в ВУЗе. Будни или...

Star wars: история далекой-далекой галактики - легенды и сказания

Star wars: история далекой-далекой галактики - легенды и сказания

Кратко о статье: Расширенная вселенная давно развивается независимо от своих непосредственных создателей. Дабы не путаться в хронологии событий,...

ю Высшие и центральные государственные учреждения

ю Высшие и центральные государственные учреждения

В эпоху Петра I в России продолжились и усилились серьезные изменения в политической, экономической и культурной жизни России, начавшиеся еще в...

Духовно-рыцарские ордена – кратко

Духовно-рыцарские ордена – кратко

Орден госпитальеров — самый знаменитый и прославленный из духовно-рыцарских орденов. Полное его наименование — Суверенный Военный Орден...

feed-image RSS